BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 19202202)

  • 1. Transport of lithium across the lamprey (Lampetra fluviatilis) erythrocyte membrane.
    Gusev GP; Agalakova NI; Ivanova TI
    Gen Physiol Biophys; 2008 Dec; 27(4):284-90. PubMed ID: 19202202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amiloride-sensitive sodium transport in lamprey red blood cells: evidence for two distinct transport pathways.
    Gusev GP; Ivanova TI
    Gen Physiol Biophys; 2004 Dec; 23(4):443-56. PubMed ID: 15815079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An amiloride-sensitive, volume-dependent Na+ transport across the lamprey (Lampetra fluviatilis) erythrocyte membrane.
    Gusev GP; Sherstobitov AO
    Gen Physiol Biophys; 1996 Apr; 15(2):129-43. PubMed ID: 8899417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na(+)-H+ and Na(+)-Li+ exchange are mediated by the same membrane transport protein in human red blood cells: an NMR investigation.
    Chi Y; Mo S; Mota de Freitas D
    Biochemistry; 1996 Sep; 35(38):12433-42. PubMed ID: 8823178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neonatal red blood cells: amiloride-insensitive Na+-H+ transport isoform would express Na+-Li+ exchange.
    Serrani RE; Mujica G; Gioia IA; Corchs JL
    Acta Physiol Pharmacol Bulg; 2000; 25(3-4):71-4. PubMed ID: 11688549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper effects on ion transport across lamprey erythrocyte membrane: Cl(-)/OH(-) exchange induced by cuprous ions.
    Bogdanova AY; Virkki LV; Gusev GP; Nikinmaa M
    Toxicol Appl Pharmacol; 1999 Sep; 159(3):204-13. PubMed ID: 10486307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloride transport in red blood cells of lamprey Lampetra fluviatilis: evidence for a novel anion-exchange system.
    Bogdanova AYu ; Sherstobitov AO; Gusev GP
    J Exp Biol; 1998 Mar; 201(Pt 5):693-700. PubMed ID: 9542152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Kinetic properties of sodium transport pathways in the river lamprey Lampetra fluviatilis erythrocytes].
    Ivanova TI; Sherstobitov AO; Gusev GP
    Zh Evol Biokhim Fiziol; 2007; 43(6):468-73. PubMed ID: 18265557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volume regulation in red blood cells of the frog Rana temporaria after osmotic shrinkage and swelling.
    Gusev GP; Lapin AV; Agulakova NI
    Membr Cell Biol; 1997; 11(3):305-17. PubMed ID: 9460050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic differences in lithium-sodium exchange and regulation of the sodium-hydrogen exchanger in essential hypertension.
    Canessa ML; Morgan K; Semplicini A
    J Cardiovasc Pharmacol; 1988; 12 Suppl 3():S92-8. PubMed ID: 2467112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of sodium transport in rat erythrocytes by inhibition of protein phosphatases 1 and 2A.
    Ivanova TI; Agalakova NI; Gusev GP
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Sep; 145(1):60-7. PubMed ID: 16875859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of metabolic inhibitors on K+ transport across the lamprey (Lampetra fluviatilis) erythrocyte membrane.
    Gusev GP; Sherstobitov AO
    Gen Physiol Biophys; 1994 Dec; 13(6):459-68. PubMed ID: 7797053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cell age and phenylhydrazine on the cation transport properties of rabbit erythrocytes.
    Brugnara C; de Franceschi L
    J Cell Physiol; 1993 Feb; 154(2):271-80. PubMed ID: 8381125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na+/Li+ exchange kinetic characterization. Red blood cells from normotensive individuals.
    Corchs JL; Taborda D; Mujica G; Serrani RE
    Acta Physiol Pharmacol Bulg; 2000; 25(3-4):75-9. PubMed ID: 11688550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of Na+/H+ exchange by protein phosphatase inhibitors in red blood cells of the frog Rana ridibunda.
    Gusev GP; Ivanova TI
    J Comp Physiol B; 2003 Jul; 173(5):429-35. PubMed ID: 12756484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen-sensitive regulatory volume increase and Na transport in red blood cells from the cane toad, Bufo marinus.
    Kristensen K; Koldkjaer P; Berenbrink M; Wang T
    J Exp Biol; 2007 Jul; 210(Pt 13):2290-9. PubMed ID: 17575034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloride transport in red blood cells of lamprey lampetra fluviatilis: evidence for a novel anion-exchange system.
    Bogdanova A; Sherstobitov A; g
    J Exp Biol; 1998 Jun; 201 (Pt 12)():693-700. PubMed ID: 9450978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erythrocyte cation content and sodium transport in Siberian huskies.
    Wilson O; Dixon E
    Am J Vet Res; 1991 Sep; 52(9):1427-32. PubMed ID: 1952327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Transport of monovalent thallium across the membrane of oocyte of the lamprey Lampetra fluviatilis].
    Sherstobitov AO; Lapin AV; Glazunov VV; Nikiforov AA
    Zh Evol Biokhim Fiziol; 2010; 46(3):198-202. PubMed ID: 20583579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of ion transport across lamprey (Lampetra fluviatilis) erythrocyte membrane by oxygen tension.
    Virkki LV; Salama A; Nikinmaa M
    J Exp Biol; 1998 May; 201 (Pt 12)():1927-37. PubMed ID: 9600874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.