BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19202325)

  • 1. Effective dose measured with a life size human phantom in a low Earth orbit mission.
    Yasuda H
    J Radiat Res; 2009 Mar; 50(2):89-96. PubMed ID: 19202325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Space radiation absorbed dose distribution in a human phantom.
    Badhwar GD; Atwell W; Badavi FF; Yang TC; Cleghorn TF
    Radiat Res; 2002 Jan; 157(1):76-91. PubMed ID: 11754645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organ/Tissue absorbed doses measured with a human phantom torso in the 9th Shuttle-Mir Mission (STS-91).
    Yasuda H; Komiyama T; Fujitaka K
    Uchu Koku Kankyo Igaku; 1999 Sep; 36(3):105-12. PubMed ID: 11543317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective dose equivalent on the ninth Shuttle--Mir mission (STS-91).
    Yasuda H; Badhwar GD; Komiyama T; Fujitaka K
    Radiat Res; 2000 Dec; 154(6):705-13. PubMed ID: 11096429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NUNDO: a numerical model of a human torso phantom and its application to effective dose equivalent calculations for astronauts at the ISS.
    Puchalska M; Bilski P; Berger T; Hajek M; Horwacik T; Körner C; Olko P; Shurshakov V; Reitz G
    Radiat Environ Biophys; 2014 Nov; 53(4):719-27. PubMed ID: 25119442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency of a radiophotoluminescence glass dosemeter for low-earth-orbit space radiation.
    Yasuda H; Fujitaka K
    Radiat Prot Dosimetry; 2002; 100(1-4):545-8. PubMed ID: 12382940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit.
    El-Jaby S; Richardson RB
    Life Sci Space Res (Amst); 2015 Jul; 6():1-9. PubMed ID: 26256622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring on board spacecraft by means of passive detectors.
    Ambrožová I; Brabcová K; Spurný F; Shurshakov VA; Kartsev IS; Tolochek RV
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):605-10. PubMed ID: 20959332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ICRP, 123. Assessment of radiation exposure of astronauts in space. ICRP Publication 123.
    ; Dietze G; Bartlett DT; Cool DA; Cucinotta FA; Jia X; McAulay IR; Pelliccioni M; Petrov V; Reitz G; Sato T
    Ann ICRP; 2013 Aug; 42(4):1-339. PubMed ID: 23958389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical and biological organ dosimetry analysis for international space station astronauts.
    Cucinotta FA; Kim MH; Willingham V; George KA
    Radiat Res; 2008 Jul; 170(1):127-38. PubMed ID: 18582161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of anatomical modeling on space radiation dose estimates: a comparison of doses for NASA phantoms and the 5th, 50th, and 95th percentile male and female astronauts.
    Bahadori AA; Van Baalen M; Shavers MR; Dodge C; Semones EJ; Bolch WE
    Phys Med Biol; 2011 Mar; 56(6):1671-94. PubMed ID: 21346276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probability of hippocampus cell hits by high-LET space radiation in a low-Earth-orbit mission (STS-91).
    Yasuda H; Komiyama T; Fujitaka K
    Phys Med; 2001; 17 Suppl 1():166-9. PubMed ID: 11771547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low Earth orbit assessment of proton anisotropy using AP8 and AP9 trapped proton models.
    Badavi FF; Walker SA; Santos Koos LM
    Life Sci Space Res (Amst); 2015 Apr; 5():21-30. PubMed ID: 26177846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Dose distribution in the depth of the tissue-equivalent ball phantom modeling location of human body critical organs inside the compartments of the International space station].
    Kartsev IS; Shurshakov VA; Tolochek RV; Akatov IuA
    Aviakosm Ekolog Med; 2009; 43(5):42-7. PubMed ID: 20120916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of methods for individualized astronaut organ dosimetry: Morphometry-based phantom library versus body contour autoscaling of a reference phantom.
    Sands MM; Borrego D; Maynard MR; Bahadori AA; Bolch WE
    Life Sci Space Res (Amst); 2017 Nov; 15():23-31. PubMed ID: 29198311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Space life sciences: radiation risk assessment and radiation measurements in low Earth orbit.
    Adv Space Res; 2004; 34(6):1277-462. PubMed ID: 15880912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dosimetric results from the Mir orbital station.
    Benton ER; Benton EV; Frank AL; Leonov A; Gaskin J
    Radiat Prot Dosimetry; 2002; 100(1-4):489-94. PubMed ID: 12382927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation dosimetry onboard the International Space Station ISS.
    Berger T
    Z Med Phys; 2008; 18(4):265-75. PubMed ID: 19205296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of time-resolved personal Dosimetry in space: The ISS Crew Active Dosimeter.
    Gaza R; Johnson AS; Hayes B; Campbell-Ricketts T; Rakkola J; Abdelmelek M; Zeitlin C; George S; Stoffle N; Castro A; Amberboy C; Semones E
    Life Sci Space Res (Amst); 2023 Nov; 39():95-105. PubMed ID: 37945094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Results of dosimetric measurements in space missions.
    Reitz G; Beaujean R; Kopp J; Leicher M; Strauch K; Heilmann C
    Radiat Prot Dosimetry; 1997; 70(1-4):413-8. PubMed ID: 11540535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.