These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 19202874)
1. Assessment of Pb uptake, translocation and immobilization in kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings. Ho WM; Ang LH; Lee DK J Environ Sci (China); 2008; 20(11):1341-7. PubMed ID: 19202874 [TBL] [Abstract][Full Text] [Related]
2. Phytoextraction of As and Fe using Hibiscus cannabinus L. from soil polluted with landfill leachate. Meera M; Agamuthu P Int J Phytoremediation; 2012 Feb; 14(2):186-99. PubMed ID: 22567704 [TBL] [Abstract][Full Text] [Related]
3. Phytoremediation with kenaf (Hibiscus cannabinus L.) for cadmium-contaminated paddy soil in southern China: translocation, uptake, and assessment of cultivars. Guo Y; Xiao Q; Zhao X; Wu Z; Dai Z; Zhang M; Qiu C; Long S; Wang Y Environ Sci Pollut Res Int; 2023 Jan; 30(1):1244-1252. PubMed ID: 35913693 [TBL] [Abstract][Full Text] [Related]
4. Effects of peat on plant growth and lead and zinc phytostabilization from lead-zinc mine tailing in southern China: Screening plant species resisting and accumulating metals. Tang C; Chen Y; Zhang Q; Li J; Zhang F; Liu Z Ecotoxicol Environ Saf; 2019 Jul; 176():42-49. PubMed ID: 30921695 [TBL] [Abstract][Full Text] [Related]
5. Intercropping of kenaf and soybean affects plant growth, antioxidant capacity, and uptake of cadmium and lead in contaminated mining soil. Rehman M; Pan J; Mubeen S; Ma W; Luo D; Cao S; Chen P Environ Sci Pollut Res Int; 2023 Aug; 30(38):89638-89650. PubMed ID: 37454378 [TBL] [Abstract][Full Text] [Related]
6. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals. Arbaoui S; Evlard A; Mhamdi Mel W; Campanella B; Paul R; Bettaieb T Biodegradation; 2013 Jul; 24(4):563-7. PubMed ID: 23436151 [TBL] [Abstract][Full Text] [Related]
7. Ascorbate-Glutathione Cycle and Ultrastructural Analyses of Two Kenaf Cultivars ( Niu L; Cao R; Kang J; Zhang X; Lv J Int J Environ Res Public Health; 2018 Jul; 15(7):. PubMed ID: 29997377 [TBL] [Abstract][Full Text] [Related]
8. [Using kenaf (Hibiscus cannabinus) to reclaim multi-metal contaminated acidic soil]. Yang YX; Lu HL; Zhan SS; Deng TH; Lin QQ; Wang SZ; Yang XH; Qiu RL Ying Yong Sheng Tai Xue Bao; 2013 Mar; 24(3):832-8. PubMed ID: 23755502 [TBL] [Abstract][Full Text] [Related]
9. Nitrogen dioxide at an ambient level improves the capability of kenaf (Hibiscus cannabinus) to decontaminate cadmium. Takahashi M; Adam SE; Konaka D; Morikawa H Int J Phytoremediation; 2008; 10(1):73-6. PubMed ID: 18709933 [TBL] [Abstract][Full Text] [Related]
10. Phytotreatment of soil contaminated with used lubricating oil using Hibiscus cannabinus. Abioye OP; Agamuthu P; Abdul Aziz AR Biodegradation; 2012 Apr; 23(2):277-86. PubMed ID: 21870160 [TBL] [Abstract][Full Text] [Related]
11. Exogenous methyl jasmonate enhanced kenaf (Hibiscus cannabinus) tolerance against lead (Pb) toxicity by improving antioxidant capacity and osmoregulators. Mubeen S; Pan J; Saeed W; Luo D; Rehman M; Hui Z; Chen P Environ Sci Pollut Res Int; 2024 May; 31(21):30806-30818. PubMed ID: 38613757 [TBL] [Abstract][Full Text] [Related]
12. Potential of Sonchus arvensis for the phytoremediation of lead-contaminated soil. Surat W; Kruatrachue M; Pokethitiyook P; Tanhan P; Samranwanich T Int J Phytoremediation; 2008; 10():325-42. PubMed ID: 19260217 [TBL] [Abstract][Full Text] [Related]
13. Physiological responses and tolerance of kenaf (Hibiscus cannabinus L.) exposed to chromium. Ding H; Wang G; Lou L; Lv J Ecotoxicol Environ Saf; 2016 Nov; 133():509-18. PubMed ID: 27553521 [TBL] [Abstract][Full Text] [Related]
14. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure. Selamat SN; Abdullah SR; Idris M Int J Phytoremediation; 2014; 16(7-12):694-703. PubMed ID: 24933879 [TBL] [Abstract][Full Text] [Related]
15. Morpho-physiological traits, biochemical response and phytoextraction potential of short-term copper stress on kenaf ( Saleem MH; Fahad S; Rehman M; Saud S; Jamal Y; Khan S; Liu L PeerJ; 2020; 8():e8321. PubMed ID: 32030320 [TBL] [Abstract][Full Text] [Related]
16. Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: a glasshouse study. Rotkittikhun P; Chaiyarat R; Kruatrachue M; Pokethitiyook P; Baker AJ Chemosphere; 2007 Jan; 66(1):45-53. PubMed ID: 16828842 [TBL] [Abstract][Full Text] [Related]
17. Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. Meeinkuirt W; Pokethitiyook P; Kruatrachue M; Tanhan P; Chaiyarat R Int J Phytoremediation; 2012 Oct; 14(9):925-38. PubMed ID: 22908655 [TBL] [Abstract][Full Text] [Related]
18. Role of ethylenediaminetetraacetic acid on lead uptake and translocation by tumbleweed (salsola kali L.). de la Rosa G; Peralta-Videa JR; Cruz-Jimenez G; Duarte-Gardea M; Martinez-Martinez A; Cano-Aguilera I; Sharma NC; Sahi SV; Gardea-Torresdey JL Environ Toxicol Chem; 2007 May; 26(5):1033-9. PubMed ID: 17521152 [TBL] [Abstract][Full Text] [Related]
20. Effect of Emulsification Method and Particle Size on the Rate of in vivo Oral Bioavailability of Kenaf (Hibiscus cannabinus L.) Seed Oil. Cheong AM; Tan CP; Nyam KL J Food Sci; 2018 Jul; 83(7):1964-1969. PubMed ID: 29802733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]