BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19202875)

  • 1. Biogeochemical cyclic activity of bacterial arsB in arsenic-contaminated mines.
    Chang JS; Ren X; Kim KW
    J Environ Sci (China); 2008; 20(11):1348-55. PubMed ID: 19202875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold-silver mines in the Republic of Korea.
    Chang JS; Kim YH; Kim KW
    Appl Microbiol Biotechnol; 2008 Aug; 80(1):155-65. PubMed ID: 18560832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and ars detoxification of arsenite-oxidizing bacteria from abandoned arsenic-contaminated mines.
    Chang JS; Yoon IH; Kim KW
    J Microbiol Biotechnol; 2007 May; 17(5):812-21. PubMed ID: 18051304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial aox genotype from arsenic contaminated mine to adjacent coastal sediment: evidences for potential biogeochemical arsenic oxidation.
    Chang JS; Lee JH; Kim IS
    J Hazard Mater; 2011 Oct; 193():233-42. PubMed ID: 21864978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic biotransformation potential of microbial arsH responses in the biogeochemical cycling of arsenic-contaminated groundwater.
    Chang JS; Yoon IH; Kim KW
    Chemosphere; 2018 Jan; 191():729-737. PubMed ID: 29080535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils.
    Cai L; Liu G; Rensing C; Wang G
    BMC Microbiol; 2009 Jan; 9():4. PubMed ID: 19128515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic.
    Mateos LM; Ordóñez E; Letek M; Gil JA
    Int Microbiol; 2006 Sep; 9(3):207-15. PubMed ID: 17061211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyper Accumulation of Arsenic in Mutants of Ochrobactrum tritici Silenced for Arsenite Efflux Pumps.
    Sousa T; Branco R; Piedade AP; Morais PV
    PLoS One; 2015; 10(7):e0131317. PubMed ID: 26132104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homology of Escherichia coli R773 arsA, arsB, and arsC genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched creek waters.
    Saltikov CW; Olson BH
    Appl Environ Microbiol; 2002 Jan; 68(1):280-8. PubMed ID: 11772637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functions and Unique Diversity of Genes and Microorganisms Involved in Arsenite Oxidation from the Tailings of a Realgar Mine.
    Zeng XC; E G; Wang J; Wang N; Chen X; Mu Y; Li H; Yang Y; Liu Y; Wang Y
    Appl Environ Microbiol; 2016 Dec; 82(24):7019-7029. PubMed ID: 27663031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial interactions in the arsenic cycle: adoptive strategies and applications in environmental management.
    Dhuldhaj UP; Yadav IC; Singh S; Sharma NK
    Rev Environ Contam Toxicol; 2013; 224():1-38. PubMed ID: 23232917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial responses to environmental arsenic.
    Páez-Espino D; Tamames J; de Lorenzo V; Cánovas D
    Biometals; 2009 Feb; 22(1):117-30. PubMed ID: 19130261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out by arsenic metabolising prokaryotes - A comprehensive review.
    Kumari N; Jagadevan S
    Chemosphere; 2016 Nov; 163():400-412. PubMed ID: 27565307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: Arsenic contamination in Cambodia.
    Chang JS
    Environ Pollut; 2015 Nov; 206():315-23. PubMed ID: 26219073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity and Distribution of Arsenic-Related Genes Along a Pollution Gradient in a River Affected by Acid Mine Drainage.
    Desoeuvre A; Casiot C; Héry M
    Microb Ecol; 2016 Apr; 71(3):672-85. PubMed ID: 26603631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of arsenic on the biofilm formations of arsenite-oxidizing bacteria.
    Zeng XC; He Z; Chen X; Cao QAD; Li H; Wang Y
    Ecotoxicol Environ Saf; 2018 Dec; 165():1-10. PubMed ID: 30173020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production.
    Román-Ponce B; Ramos-Garza J; Arroyo-Herrera I; Maldonado-Hernández J; Bahena-Osorio Y; Vásquez-Murrieta MS; Wang ET
    Arch Microbiol; 2018 Aug; 200(6):883-895. PubMed ID: 29476206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic resistance in the archaeon "Ferroplasma acidarmanus": new insights into the structure and evolution of the ars genes.
    Gihring TM; Bond PL; Peters SC; Banfield JF
    Extremophiles; 2003 Apr; 7(2):123-30. PubMed ID: 12664264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the ars gene cluster from highly arsenic-resistant Burkholderia xenovorans LB400.
    Serrato-Gamiño N; Salgado-Lora MG; Chávez-Moctezuma MP; Campos-García J; Cervantes C
    World J Microbiol Biotechnol; 2018 Sep; 34(10):142. PubMed ID: 30203106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11.
    Koechler S; Arsène-Ploetze F; Brochier-Armanet C; Goulhen-Chollet F; Heinrich-Salmeron A; Jost B; Lièvremont D; Philipps M; Plewniak F; Bertin PN; Lett MC
    Res Microbiol; 2015 Apr; 166(3):205-14. PubMed ID: 25753102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.