BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 19203124)

  • 1. 2007 IEEE Device Research Conference: Tour de Force Multigate and Nanowire Metal Oxide Semiconductor Field-Effect Transistors and Their Application.
    Zhang P; Mayer TS; Jackson TN
    ACS Nano; 2007 Aug; 1(1):6-9. PubMed ID: 19203124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complementary metal oxide semiconductor compatible silicon nanowires-on-a-chip: fabrication and preclinical validation for the detection of a cancer prognostic protein marker in serum.
    Tran DP; Wolfrum B; Stockmann R; Pai JH; Pourhassan-Moghaddam M; Offenhäusser A; Thierry B
    Anal Chem; 2015 Feb; 87(3):1662-8. PubMed ID: 25531273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monolithic integration of a silicon nanowire field-effect transistors array on a complementary metal-oxide semiconductor chip for biochemical sensor applications.
    Livi P; Kwiat M; Shadmani A; Pevzner A; Navarra G; Rothe J; Stettler A; Chen Y; Patolsky F; Hierlemann A
    Anal Chem; 2015 Oct; 87(19):9982-90. PubMed ID: 26348408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transparent metal oxide nanowire transistors.
    Chen D; Liu Z; Liang B; Wang X; Shen G
    Nanoscale; 2012 May; 4(10):3001-12. PubMed ID: 22495655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors.
    Lu N; Gao A; Dai P; Li T; Wang Y; Gao X; Song S; Fan C; Wang Y
    Methods; 2013 Oct; 63(3):212-8. PubMed ID: 23886908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology.
    Huang CW; Huang YJ; Yen PW; Tsai HH; Liao HH; Juang YZ; Lu SS; Lin CT
    Lab Chip; 2013 Nov; 13(22):4451-9. PubMed ID: 24080725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CMOS biosensors for in vitro diagnosis - transducing mechanisms and applications.
    Lei KM; Mak PI; Law MK; Martins RP
    Lab Chip; 2016 Sep; 16(19):3664-3681. PubMed ID: 27713991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementary metal oxide semiconductor-compatible silicon nanowire biofield-effect transistors as affinity biosensors.
    Duan X; Rajan NK; Izadi MH; Reed MA
    Nanomedicine (Lond); 2013 Nov; 8(11):1839-51. PubMed ID: 24156488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays.
    Gao A; Lu N; Dai P; Fan C; Wang Y; Li T
    Nanoscale; 2014 Nov; 6(21):13036-42. PubMed ID: 25248104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-integration of nano-scale vertical- and horizontal-channel metal-oxide-semiconductor field-effect transistors for low power CMOS technology.
    Sun MC; Kim G; Kim SW; Kim HW; Kim H; Lee JH; Shin H; Park BG
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5313-7. PubMed ID: 22966563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays.
    Chua JH; Chee RE; Agarwal A; Wong SM; Zhang GJ
    Anal Chem; 2009 Aug; 81(15):6266-71. PubMed ID: 20337397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CMOS-compatible poly-Si nanowire device with hybrid sensor/memory characteristics for System-on-Chip applications.
    Chen MC; Chen HY; Lin CY; Chien CH; Hsieh TF; Horng JT; Qiu JT; Huang CC; Ho CH; Yang FL
    Sensors (Basel); 2012; 12(4):3952-63. PubMed ID: 22666012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining axial and radial nanowire heterostructures: radial Esaki diodes and tunnel field-effect transistors.
    Dey AW; Svensson J; Ek M; Lind E; Thelander C; Wernersson LE
    Nano Lett; 2013; 13(12):5919-24. PubMed ID: 24224956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-Two-Dimensional Metal Oxide Semiconductors Based Ultrasensitive Potentiometric Biosensors.
    Chen H; Rim YS; Wang IC; Li C; Zhu B; Sun M; Goorsky MS; He X; Yang Y
    ACS Nano; 2017 May; 11(5):4710-4718. PubMed ID: 28430412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CMOS-compatible, label-free silicon-nanowire biosensors to detect cardiac troponin I for acute myocardial infarction diagnosis.
    Kong T; Su R; Zhang B; Zhang Q; Cheng G
    Biosens Bioelectron; 2012 Apr; 34(1):267-72. PubMed ID: 22386490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addressing the use of PDIF-CN2 molecules in the development of n-type organic field-effect transistors for biosensing applications.
    Barra M; Viggiano D; Ambrosino P; Bloisi F; Di Girolamo FV; Soldovieri MV; Taglialatela M; Cassinese A
    Biochim Biophys Acta; 2013 Sep; 1830(9):4365-73. PubMed ID: 23220699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon nanowire arrays for label-free detection of DNA.
    Gao Z; Agarwal A; Trigg AD; Singh N; Fang C; Tung CH; Fan Y; Buddharaju KD; Kong J
    Anal Chem; 2007 May; 79(9):3291-7. PubMed ID: 17407259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing.
    Lu N; Gao A; Dai P; Song S; Fan C; Wang Y; Li T
    Small; 2014 May; 10(10):2022-8. PubMed ID: 24574202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress on Semiconductor-Interface Facing Clinical Biosensing.
    Zhang M; Adkins M; Wang Z
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-Free Direct Detection of miRNAs with Poly-Silicon Nanowire Biosensors.
    He J; Zhu J; Gong C; Qi J; Xiao H; Jiang B; Zhao Y
    PLoS One; 2015; 10(12):e0145160. PubMed ID: 26709827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.