BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19203200)

  • 1. Drug permeability assay using microhole-trapped cells in a microfluidic device.
    Yeon JH; Park JK
    Anal Chem; 2009 Mar; 81(5):1944-51. PubMed ID: 19203200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbioassay system for antiallergic drug screening using suspension cells retaining in a poly(dimethylsiloxane) microfluidic device.
    Tokuyama T; Fujii S; Sato K; Abo M; Okubo A
    Anal Chem; 2005 May; 77(10):3309-14. PubMed ID: 15889923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.
    Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S
    Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The deformation of flexible PDMS microchannels under a pressure driven flow.
    Hardy BS; Uechi K; Zhen J; Pirouz Kavehpour H
    Lab Chip; 2009 Apr; 9(7):935-8. PubMed ID: 19294304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device.
    Ma B; Zhang G; Qin J; Lin B
    Lab Chip; 2009 Jan; 9(2):232-8. PubMed ID: 19107278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
    Jang KJ; Suh KY
    Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic device for depositing and addressing two cell populations with intercellular population communication capability.
    Lovchik RD; Tonna N; Bianco F; Matteoli M; Delamarche E
    Biomed Microdevices; 2010 Apr; 12(2):275-82. PubMed ID: 20013313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Microfluidic cell culture array chip for drug screening assays].
    Zheng Y; Wu J; Shao J; Jin Q; Zhao J
    Sheng Wu Gong Cheng Xue Bao; 2009 May; 25(5):779-85. PubMed ID: 19670650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a microfluidic device for determination of cell osmotic behavior and membrane transport properties.
    Chen HH; Purtteman JJ; Heimfeld S; Folch A; Gao D
    Cryobiology; 2007 Dec; 55(3):200-9. PubMed ID: 17889847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2005 Jun; 5(6):634-45. PubMed ID: 15915256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive heparin immobilized onto microfluidic channels in poly(dimethylsiloxane) results in hydrophilic surface properties.
    Thorslund S; Sanchez J; Larsson R; Nikolajeff F; Bergquist J
    Colloids Surf B Biointerfaces; 2005 Dec; 46(4):240-7. PubMed ID: 16352425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure-driven perfusion culture microchamber array for a parallel drug cytotoxicity assay.
    Sugiura S; Edahiro J; Kikuchi K; Sumaru K; Kanamori T
    Biotechnol Bioeng; 2008 Aug; 100(6):1156-65. PubMed ID: 18553395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rotating microfluidic array chip for staining assays.
    Chen H; Li X; Wang L; Li PC
    Talanta; 2010 Jun; 81(4-5):1203-8. PubMed ID: 20441885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative measurements of the strength of adhesion of human neutrophils to a substratum in a microfluidic device.
    Gutierrez E; Groisman A
    Anal Chem; 2007 Mar; 79(6):2249-58. PubMed ID: 17305308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies.
    Sia SK; Whitesides GM
    Electrophoresis; 2003 Nov; 24(21):3563-76. PubMed ID: 14613181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device.
    VanDelinder V; Groisman A
    Anal Chem; 2006 Jun; 78(11):3765-71. PubMed ID: 16737235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro testing of drug absorption for drug 'developability' assessment: forming an interface between in vitro preclinical data and clinical outcome.
    Sun D; Yu LX; Hussain MA; Wall DA; Smith RL; Amidon GL
    Curr Opin Drug Discov Devel; 2004 Jan; 7(1):75-85. PubMed ID: 14982151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS).
    Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y
    Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.