BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 19203225)

  • 1. Serial changes in bladder, locomotion, and levels of neurotrophic factors in rats with spinal cord contusion.
    Hyun JK; Lee YI; Son YJ; Park JS
    J Neurotrauma; 2009 Oct; 26(10):1773-82. PubMed ID: 19203225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transplants of fibroblasts expressing BDNF and NT-3 promote recovery of bladder and hindlimb function following spinal contusion injury in rats.
    Mitsui T; Fischer I; Shumsky JS; Murray M
    Exp Neurol; 2005 Aug; 194(2):410-31. PubMed ID: 16022868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats.
    Park WB; Kim SY; Lee SH; Kim HW; Park JS; Hyun JK
    BMC Neurosci; 2010 Sep; 11():119. PubMed ID: 20846445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordination of the bladder detrusor and the external urethral sphincter in a rat model of spinal cord injury: effect of injury severity.
    Pikov V; Wrathall JR
    J Neurosci; 2001 Jan; 21(2):559-69. PubMed ID: 11160435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurogenic bladder dysfunction does not correlate with astrocyte and microglia activation produced by graded force in a contusion-induced spinal cord injury.
    Munoz A
    Brain Res Bull; 2017 May; 131():18-24. PubMed ID: 28267560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in urinary bladder neurotrophic factor mRNA and NGF protein following urinary bladder dysfunction.
    Vizzard MA
    Exp Neurol; 2000 Jan; 161(1):273-84. PubMed ID: 10683293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A noninvasive ultrasonographic method to evaluate bladder function recovery in spinal cord injured rats.
    Keirstead HS; Fedulov V; Cloutier F; Steward O; Duel BP
    Exp Neurol; 2005 Jul; 194(1):120-7. PubMed ID: 15899249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel multi-system functional gains via task specific training in spinal cord injured male rats.
    Ward PJ; Herrity AN; Smith RR; Willhite A; Harrison BJ; Petruska JC; Harkema SJ; Hubscher CH
    J Neurotrauma; 2014 May; 31(9):819-33. PubMed ID: 24294909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of motor function induced by skeletal muscle contraction in spinal cord-injured rats.
    Hayashi N; Himi N; Nakamura-Maruyama E; Okabe N; Sakamoto I; Hasegawa T; Miyamoto O
    Spine J; 2019 Jun; 19(6):1094-1105. PubMed ID: 30583107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermittent noxious stimulation following spinal cord contusion injury impairs locomotor recovery and reduces spinal brain-derived neurotrophic factor-tropomyosin-receptor kinase signaling in adult rats.
    Garraway SM; Turtle JD; Huie JR; Lee KH; Hook MA; Woller SA; Grau JW
    Neuroscience; 2011 Dec; 199():86-102. PubMed ID: 22027236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transplantation of neurotrophin-3-expressing bone mesenchymal stem cells improves recovery in a rat model of spinal cord injury.
    Wang LJ; Zhang RP; Li JD
    Acta Neurochir (Wien); 2014 Jul; 156(7):1409-18. PubMed ID: 24744011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in afferent activity after spinal cord injury.
    de Groat WC; Yoshimura N
    Neurourol Urodyn; 2010; 29(1):63-76. PubMed ID: 20025033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression alterations of neurotrophins, their receptors and prohormone convertases in a rat model of spinal cord contusion.
    Hajebrahimi Z; Mowla SJ; Movahedin M; Tavallaei M
    Neurosci Lett; 2008 Aug; 441(3):261-6. PubMed ID: 18585435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurogenic bladder model for spinal cord injury: spinal cord microdialysis and chronic urodynamics.
    Smith CP; Somogyi GT; Bird ET; Chancellor MB; Boone TB
    Brain Res Brain Res Protoc; 2002 Feb; 9(1):57-64. PubMed ID: 11852271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of lithium chloride on BDNF, NT3, and their receptor mRNA levels in the spinal contusion rat models.
    Abdanipour A; Moradi F; Fakheri F; Ghorbanlou M; Nejatbakhsh R
    Neurol Res; 2019 Jun; 41(6):577-583. PubMed ID: 30879425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oral erlotinib, but not rapamycin, causes modest acceleration of bladder and hindlimb recovery from spinal cord injury in rats.
    Kjell J; Pernold K; Olson L; Abrams MB
    Spinal Cord; 2014 Mar; 52(3):186-90. PubMed ID: 24445976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of brain-derived neurotrophic factor (BDNF) in the development of neurogenic detrusor overactivity (NDO).
    Frias B; Santos J; Morgado M; Sousa MM; Gray SM; McCloskey KD; Allen S; Cruz F; Cruz CD
    J Neurosci; 2015 Feb; 35(5):2146-60. PubMed ID: 25653370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of early surgical decompression on functional and histological outcomes after severe experimental thoracic spinal cord injury.
    Jalan D; Saini N; Zaidi M; Pallottie A; Elkabes S; Heary RF
    J Neurosurg Spine; 2017 Jan; 26(1):62-75. PubMed ID: 27636866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene transfer of glial cell line-derived neurotrophic factor promotes functional recovery following spinal cord contusion.
    Tai MH; Cheng H; Wu JP; Liu YL; Lin PR; Kuo JS; Tseng CJ; Tzeng SF
    Exp Neurol; 2003 Oct; 183(2):508-15. PubMed ID: 14552891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary study of a genetically engineered spinal cord implant on urinary bladder after experimental spinal cord injury in rats.
    Sakamoto K; Uvelius B; Khan T; Damaser MS
    J Rehabil Res Dev; 2002; 39(3):347-57. PubMed ID: 12173755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.