BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 19203413)

  • 1. Isolator and other neonatal piglet models in developmental immunology and identification of virulence factors.
    Butler JE
    Anim Health Res Rev; 2009 Jun; 10(1):35-52. PubMed ID: 19203413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The piglet as a model for B cell and immune system development.
    Butler JE; Lager KM; Splichal I; Francis D; Kacskovics I; Sinkora M; Wertz N; Sun J; Zhao Y; Brown WR; DeWald R; Dierks S; Muyldermans S; Lunney JK; McCray PB; Rogers CS; Welsh MJ; Navarro P; Klobasa F; Habe F; Ramsoondar J
    Vet Immunol Immunopathol; 2009 Mar; 128(1-3):147-70. PubMed ID: 19056129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct experimental evidence that early-life farm environment influences regulation of immune responses.
    Lewis MC; Inman CF; Patel D; Schmidt B; Mulder I; Miller B; Gill BP; Pluske J; Kelly D; Stokes CR; Bailey M
    Pediatr Allergy Immunol; 2012 May; 23(3):265-9. PubMed ID: 22300455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibody repertoire development in fetal and neonatal piglets XXI. Usage of most VH genes remains constant during fetal and postnatal development.
    Butler JE; Sun X; Wertz N; Lager KM; Chaloner K; Urban J; Francis DL; Nara PL; Tobin GJ
    Mol Immunol; 2011 Dec; 49(3):483-94. PubMed ID: 22018637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibody Repertoire Development in Swine.
    Butler JE; Wertz N; Sinkora M
    Annu Rev Anim Biosci; 2017 Feb; 5():255-279. PubMed ID: 28199170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The isolator piglet: a model for studying the development of adaptive immunity.
    Butler JE; Sinkora M
    Immunol Res; 2007; 39(1-3):33-51. PubMed ID: 17917054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early, microbially driven follicular reactions in the neonatal piglet do not contribute to expansion of the immunoglobulin heavy chain V-D-J repertoire.
    Wilson S; Norton P; Leigh J; Bailey M
    Vet Immunol Immunopathol; 2007 Jul; 118(1-2):105-12. PubMed ID: 17560662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the neonatal B and T cell repertoire in swine: implications for comparative and veterinary immunology.
    Butler JE; Sinkora M; Wertz N; Holtmeier W; Lemke CD
    Vet Res; 2006; 37(3):417-41. PubMed ID: 16611556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunoglobulins, antibody repertoire and B cell development.
    Butler JE; Zhao Y; Sinkora M; Wertz N; Kacskovics I
    Dev Comp Immunol; 2009 Mar; 33(3):321-33. PubMed ID: 18804488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibody repertoire development in fetal and neonatal piglets. XXIII: fetal piglets infected with a vaccine strain of PRRS Virus display the same immune dysregulation seen in isolator piglets.
    Sun XZ; Wertz N; Lager KL; Tobin G; Butler JE
    Vaccine; 2012 May; 30(24):3646-52. PubMed ID: 22465749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibody repertoire development in fetal and neonatal piglets. I. Four VH genes account for 80 percent of VH usage during 84 days of fetal life.
    Sun J; Hayward C; Shinde R; Christenson R; Ford SP; Butler JE
    J Immunol; 1998 Nov; 161(9):5070-8. PubMed ID: 9794445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibody repertoire development in fetal and neonatal piglets. IX. Three pathogen-associated molecular patterns act synergistically to allow germfree piglets to respond to type 2 thymus-independent and thymus-dependent antigens.
    Butler JE; Francis DH; Freeling J; Weber P; Krieg AM
    J Immunol; 2005 Nov; 175(10):6772-85. PubMed ID: 16272334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in the use of swine in developmental immunology of B and T lymphocytes.
    Sinkora M; Butler JE
    Dev Comp Immunol; 2016 May; 58():1-17. PubMed ID: 26708608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibody repertoire development in fetal and neonatal piglets. XVII. IgG subclass transcription revisited with emphasis on new IgG3.
    Butler JE; Wertz N
    J Immunol; 2006 Oct; 177(8):5480-9. PubMed ID: 17015734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pig as a model of developmental immunology.
    Rothkötter HJ; Sowa E; Pabst R
    Hum Exp Toxicol; 2002; 21(9-10):533-6. PubMed ID: 12458912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of immune responses in early pig ontogeny.
    Tlaskalova-Hogenova H; Mandel L; Trebichavsky I; Kovaru F; Barot R; Sterzl J
    Vet Immunol Immunopathol; 1994 Oct; 43(1-3):135-42. PubMed ID: 7856045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switch recombination in fetal porcine thymus is uncoupled from somatic mutation.
    Butler JE; Sun J; Weber P; Ford SP; Rehakova Z; Sinkora J; Francis D; Lager K
    Vet Immunol Immunopathol; 2002 Sep; 87(3-4):307-19. PubMed ID: 12072251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibody repertoire development in swine.
    Butler JE; Sun J; Wertz N; Sinkora M
    Dev Comp Immunol; 2006; 30(1-2):199-221. PubMed ID: 16168480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The enigma of the lower gut-associated lymphoid tissue (GALT).
    Butler JE; Sinkora M
    J Leukoc Biol; 2013 Aug; 94(2):259-70. PubMed ID: 23695307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of gut immunoglobulin A production in piglet in response to innate and environmental factors.
    Levast B; Berri M; Wilson HL; Meurens F; Salmon H
    Dev Comp Immunol; 2014 May; 44(1):235-44. PubMed ID: 24384471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.