These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19203882)

  • 1. Microchannel electrodes for recording and stimulation: in vitro evaluation.
    FitzGerald JJ; Lacour SP; McMahon SB; Fawcett JW
    IEEE Trans Biomed Eng; 2009 May; 56(5):1524-34. PubMed ID: 19203882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microchannels as axonal amplifiers.
    Fitzgerald JJ; Lacour SP; McMahon SB; Fawcett JW
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1136-46. PubMed ID: 18334406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation.
    Minev IR; Chew DJ; Delivopoulos E; Fawcett JW; Lacour SP
    J Neural Eng; 2012 Apr; 9(2):026005. PubMed ID: 22328617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes.
    Vasudevan S; Patel K; Welle C
    J Neural Eng; 2017 Feb; 14(1):016008. PubMed ID: 27934777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity.
    Sabetian P; Popovic MR; Yoo PB
    J Neural Eng; 2017 Jun; 14(3):036015. PubMed ID: 28251960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A regenerative microchannel device for recording multiple single-unit action potentials in awake, ambulatory animals.
    Srinivasan A; Tipton J; Tahilramani M; Kharbouch A; Gaupp E; Song C; Venkataraman P; Falcone J; Lacour SP; Stanley GB; English AW; Bellamkonda RV
    Eur J Neurosci; 2016 Feb; 43(3):474-85. PubMed ID: 26370722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fascicular nerve stimulation and recording using a novel double-aisle regenerative electrode.
    Delgado-Martínez I; Righi M; Santos D; Cutrone A; Bossi S; D'Amico S; Del Valle J; Micera S; Navarro X
    J Neural Eng; 2017 Aug; 14(4):046003. PubMed ID: 28382924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Very low-noise ENG amplifier system using CMOS technology.
    Rieger R; Schuettler M; Pal D; Clarke C; Langlois P; Taylor J; Donaldson N
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):427-37. PubMed ID: 17190035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microchannel neural interface manufacture by stacking silicone and metal foil laminae.
    Lancashire HT; Vanhoestenberghe A; Pendegrass CJ; Ajam YA; Magee E; Donaldson N; Blunn GW
    J Neural Eng; 2016 Jun; 13(3):034001. PubMed ID: 27001943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A regenerative microchannel neural interface for recording from and stimulating peripheral axons in vivo.
    FitzGerald JJ; Lago N; Benmerah S; Serra J; Watling CP; Cameron RE; Tarte E; Lacour SP; McMahon SB; Fawcett JW
    J Neural Eng; 2012 Feb; 9(1):016010. PubMed ID: 22258138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved nerve cuff electrode recordings with subthreshold anodic currents.
    Sahin M; Durand DM
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1044-50. PubMed ID: 9691579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute in vivo testing of a polymer cuff electrode with integrated microfluidic channels for stimulation, recording, and drug delivery on rat sciatic nerve.
    Elyahoodayan S; Larson C; Cobo AM; Meng E; Song D
    J Neurosci Methods; 2020 Apr; 336():108634. PubMed ID: 32068010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional recordings from awake, behaving rodents through a microchannel based regenerative neural interface.
    Gore RK; Choi Y; Bellamkonda R; English A
    J Neural Eng; 2015 Feb; 12(1):016017. PubMed ID: 25605627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low-noise preamplifier for nerve cuff electrodes.
    Sahin M
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):561-5. PubMed ID: 16425839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Mono-, Bi-, and Tripolar Configurations for Stimulation and Recording With an Interfascicular Interface.
    Nielsen TN; Sevcencu C; Struijk JJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):88-95. PubMed ID: 23981544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel electrode array for diameter-dependent control of axonal excitability: a simulation study.
    Lertmanorat Z; Durand DM
    IEEE Trans Biomed Eng; 2004 Jul; 51(7):1242-50. PubMed ID: 15248540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays.
    Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the reduction of stimulation artifact noise in a tripolar nerve cuff electrode by application of a conductive shield layer.
    Sabetian P; Sadeghlo B; Zhang CH; Yoo PB
    Med Eng Phys; 2017 Feb; 40():39-46. PubMed ID: 27956020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modelling of nerve stimulation and recording with peripheral visceral neural interfaces.
    Eiber CD; Payne SC; Biscola NP; Havton LA; Keast JR; Osborne PB; Fallon JB
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34740201
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.