These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1037 related articles for article (PubMed ID: 19203968)
21. Ectomycorrhizal root development in wet Alder carr forests in response to desiccation and eutrophication. Baar J; Bastiaans T; van de Coevering MA; Roelofs JG Mycorrhiza; 2002 Jun; 12(3):147-51. PubMed ID: 12072985 [TBL] [Abstract][Full Text] [Related]
22. A comparison of the growth of Scots pine (Pinus sylvestris L.) in a reclaimed oil shale post-mining area and in a Calluna site in Estonia. Kuznetsova T; Mandre M; Klõseiko J; Pärn H Environ Monit Assess; 2010 Jul; 166(1-4):257-65. PubMed ID: 19472062 [TBL] [Abstract][Full Text] [Related]
23. Controls of fine root dynamics across a gradient of gap sizes in a pine woodland. Jones RH; Mitchell RJ; Stevens G; Pecot S Oecologia; 2003 Jan; 134(1):132-43. PubMed ID: 12647190 [TBL] [Abstract][Full Text] [Related]
24. Culturable bacterial populations associated with ectomycorrhizae of Norway spruce stands with different degrees of decline in the Czech Republic. Avidano L; Rinaldi M; Gindro R; Cudlín P; Martinotti MG; Fracchia L Can J Microbiol; 2010 Jan; 56(1):52-64. PubMed ID: 20130694 [TBL] [Abstract][Full Text] [Related]
25. Ectomycorrhization of Tricholoma matsutake and two major conifers in Finland-an assessment of in vitro mycorrhiza formation. Vaario LM; Pennanen T; Sarjala T; Savonen EM; Heinonsalo J Mycorrhiza; 2010 Oct; 20(7):511-8. PubMed ID: 20177716 [TBL] [Abstract][Full Text] [Related]
26. Influence of solar UV radiation on the nitrogen metabolism in needles of Scots pine (Pinus sylvestris L.). Krywult M; Smykla J; Kinnunen H; Martz F; Sutinen ML; Lakkala K; Turunen M Environ Pollut; 2008 Dec; 156(3):1105-11. PubMed ID: 18508165 [TBL] [Abstract][Full Text] [Related]
27. Temperature-respiration relationships differ in mycorrhizal and non-mycorrhizal root systems of Picea abies (L.) Karst. Koch N; Andersen CP; Raidl S; Agerer R; Matyssek R; Grams TE Plant Biol (Stuttg); 2007 Jul; 9(4):545-9. PubMed ID: 17301933 [TBL] [Abstract][Full Text] [Related]
28. Fine root biomass, necromass and chemistry during seven years of elevated aluminium concentrations in the soil solution of a middle-aged Picea abies stand. Eldhuset TD; Lange H; de Wit HA Sci Total Environ; 2006 Oct; 369(1-3):344-56. PubMed ID: 16806407 [TBL] [Abstract][Full Text] [Related]
29. Split-root labelling to investigate Veerman L; Kalbitz K; Schoorl JC; Tietema A Isotopes Environ Health Stud; 2018 Mar; 54(1):16-27. PubMed ID: 28748732 [TBL] [Abstract][Full Text] [Related]
30. Elevated CO and nitrogen influence exudation of soluble organic compounds by ectomycorrhizal root systems. Fransson PM; Johansson EM FEMS Microbiol Ecol; 2010 Feb; 71(2):186-96. PubMed ID: 19889031 [TBL] [Abstract][Full Text] [Related]
31. Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps. Baier R; Ingenhaag J; Blaschke H; Göttlein A; Agerer R Mycorrhiza; 2006 May; 16(3):197-206. PubMed ID: 16518613 [TBL] [Abstract][Full Text] [Related]
32. Responses in growth and emissions of biogenic volatile organic compounds in Scots pine, Norway spruce and silver birch seedlings to different warming treatments in a controlled field experiment. Pikkarainen L; Nissinen K; Ghimire RP; Kivimäenpää M; Ikonen VP; Kilpeläinen A; Virjamo V; Yu H; Kirsikka-Aho S; Salminen T; Hirvonen J; Vahimaa T; Luoranen J; Peltola H Sci Total Environ; 2022 May; 821():153277. PubMed ID: 35074390 [TBL] [Abstract][Full Text] [Related]
33. Trace elements in fruiting bodies of ectomycorrhizal fungi growing in Scots pine (Pinus sylvestris L.) stands in Poland. Rudawska M; Leski T Sci Total Environ; 2005 Mar; 339(1-3):103-15. PubMed ID: 15740762 [TBL] [Abstract][Full Text] [Related]
34. Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Wallander H; Göransson H; Rosengren U Oecologia; 2004 Mar; 139(1):89-97. PubMed ID: 14727173 [TBL] [Abstract][Full Text] [Related]
35. Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Tedersoo L; Suvi T; Jairus T; Kõljalg U Environ Microbiol; 2008 May; 10(5):1189-201. PubMed ID: 18266759 [TBL] [Abstract][Full Text] [Related]
36. Responses of fungal and plant communities to partial humus removal in mid-boreal N-enriched forests. Tarvainen O; Hamberg L; Ohenoja E; Strömmer R; Markkola A J Environ Manage; 2012 Oct; 108():120-9. PubMed ID: 22705763 [TBL] [Abstract][Full Text] [Related]
37. Seasonal variation of the ¹³⁷Cs level and its relationship with potassium and carbon levels in conifer needles. Rantavaara A; Vetikko V; Raitio H; Aro L Sci Total Environ; 2012 Dec; 441():194-208. PubMed ID: 23137985 [TBL] [Abstract][Full Text] [Related]
38. Assessing the impacts of climate change and nitrogen deposition on Norway spruce (Picea abies L. Karst) growth in Austria with BIOME-BGC. Eastaugh CS; Pötzelsberger E; Hasenauer H Tree Physiol; 2011 Mar; 31(3):262-74. PubMed ID: 21512099 [TBL] [Abstract][Full Text] [Related]
39. Potential implications of shortened rotation length for forest birds, bryophytes, lichens and vascular plants: An example from southern Swedish production forests. Petersson L; Lariviere D; Holmström E; Lindbladh M; Felton A PLoS One; 2023; 18(12):e0289835. PubMed ID: 38100411 [TBL] [Abstract][Full Text] [Related]
40. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence. Angstmann JL; Ewers BE; Kwon H Tree Physiol; 2012 May; 32(5):599-611. PubMed ID: 22539635 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]