These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 1920399)
1. Torsionally tuned cruciform and Z-DNA probes for measuring unrestrained supercoiling at specific sites in DNA of living cells. Zheng GX; Kochel T; Hoepfner RW; Timmons SE; Sinden RR J Mol Biol; 1991 Sep; 221(1):107-22. PubMed ID: 1920399 [TBL] [Abstract][Full Text] [Related]
2. Amplified primer extension assay for psoralen photoproducts provides a sensitive assay for a (CG)6TA(CG)2(TG)8 Z-DNA torsionally tuned probe: preferential psoralen photobinding to one strand of a B-Z junction. Hoepfner RW; Sinden RR Biochemistry; 1993 Jul; 32(29):7542-8. PubMed ID: 8338851 [TBL] [Abstract][Full Text] [Related]
3. Perfect palindromic lac operator DNA sequence exists as a stable cruciform structure in supercoiled DNA in vitro but not in vivo. Sinden RR; Broyles SS; Pettijohn DE Proc Natl Acad Sci U S A; 1983 Apr; 80(7):1797-801. PubMed ID: 6340109 [TBL] [Abstract][Full Text] [Related]
4. Estimation of superhelical density in vivo from analysis of the level of cruciforms existing in living cells. Zheng G; Ussery DW; Sinden RR J Mol Biol; 1991 Sep; 221(1):122-9. PubMed ID: 1920400 [No Abstract] [Full Text] [Related]
5. Effects of salts, temperature, and stem length on supercoil-induced formation of cruciforms. Singleton CK J Biol Chem; 1983 Jun; 258(12):7661-8. PubMed ID: 6863259 [TBL] [Abstract][Full Text] [Related]
6. On the deletion of inverted repeated DNA in Escherichia coli: effects of length, thermal stability, and cruciform formation in vivo. Sinden RR; Zheng GX; Brankamp RG; Allen KN Genetics; 1991 Dec; 129(4):991-1005. PubMed ID: 1783300 [TBL] [Abstract][Full Text] [Related]
7. Effect of base composition at the center of inverted repeated DNA sequences on cruciform transitions in DNA. Zheng GX; Sinden RR J Biol Chem; 1988 Apr; 263(11):5356-61. PubMed ID: 3356690 [TBL] [Abstract][Full Text] [Related]
9. Influence of global DNA topology on cruciform formation in supercoiled DNA. Oussatcheva EA; Pavlicek J; Sankey OF; Sinden RR; Lyubchenko YL; Potaman VN J Mol Biol; 2004 May; 338(4):735-43. PubMed ID: 15099741 [TBL] [Abstract][Full Text] [Related]
10. A native cruciform DNA structure probed in bacteria by recombinant T7 endonuclease. Panayotatos N; Fontaine A J Biol Chem; 1987 Aug; 262(23):11364-8. PubMed ID: 3038915 [TBL] [Abstract][Full Text] [Related]
11. Analysis of left-handed Z-DNA formation in short d(CG)n sequences in Escherichia coli and Halobacterium halobium plasmids. Stabilization by increasing repeat length and DNA supercoiling but not salinity. Kim J; Yang C; DasSarma S J Biol Chem; 1996 Apr; 271(16):9340-6. PubMed ID: 8621598 [TBL] [Abstract][Full Text] [Related]
12. Stabilization of Z DNA in vivo by localized supercoiling. Rahmouni AR; Wells RD Science; 1989 Oct; 246(4928):358-63. PubMed ID: 2678475 [TBL] [Abstract][Full Text] [Related]
13. Transcription regulation in vitro by an E. coli promoter containing a DNA cruciform in the '-35' region. Horwitz MS Nucleic Acids Res; 1989 Jul; 17(14):5537-45. PubMed ID: 2668890 [TBL] [Abstract][Full Text] [Related]
14. DNA secondary structure and Raman markers of supercoiling in Escherichia coli plasmid pUC19. Serban D; Benevides JM; Thomas GJ Biochemistry; 2002 Jan; 41(3):847-53. PubMed ID: 11790106 [TBL] [Abstract][Full Text] [Related]