These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19204048)

  • 21. Direct and indirect excitation of laterodorsal tegmental neurons by Hypocretin/Orexin peptides: implications for wakefulness and narcolepsy.
    Burlet S; Tyler CJ; Leonard CS
    J Neurosci; 2002 Apr; 22(7):2862-72. PubMed ID: 11923451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y.
    Broberger C
    Brain Res; 1999 Nov; 848(1-2):101-13. PubMed ID: 10612702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct and indirect inhibition by catecholamines of hypocretin/orexin neurons.
    Li Y; van den Pol AN
    J Neurosci; 2005 Jan; 25(1):173-83. PubMed ID: 15634779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thyrotropin-releasing hormone (TRH) inhibits melanin-concentrating hormone neurons: implications for TRH-mediated anorexic and arousal actions.
    Zhang X; van den Pol AN
    J Neurosci; 2012 Feb; 32(9):3032-43. PubMed ID: 22378876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ATP-sensitive potassium channel-mediated lactate effect on orexin neurons: implications for brain energetics during arousal.
    Parsons MP; Hirasawa M
    J Neurosci; 2010 Jun; 30(24):8061-70. PubMed ID: 20554857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice.
    Sakurai T; Nagata R; Yamanaka A; Kawamura H; Tsujino N; Muraki Y; Kageyama H; Kunita S; Takahashi S; Goto K; Koyama Y; Shioda S; Yanagisawa M
    Neuron; 2005 Apr; 46(2):297-308. PubMed ID: 15848807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolism-independent sugar sensing in central orexin neurons.
    González JA; Jensen LT; Fugger L; Burdakov D
    Diabetes; 2008 Oct; 57(10):2569-76. PubMed ID: 18591392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypocretin (orexin) enhances neuron activity and cell synchrony in developing mouse GFP-expressing locus coeruleus.
    van den Pol AN; Ghosh PK; Liu RJ; Li Y; Aghajanian GK; Gao XB
    J Physiol; 2002 May; 541(Pt 1):169-85. PubMed ID: 12015428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits.
    Apergis-Schoute J; Iordanidou P; Faure C; Jego S; Schöne C; Aitta-Aho T; Adamantidis A; Burdakov D
    J Neurosci; 2015 Apr; 35(14):5435-41. PubMed ID: 25855162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GABA(B) receptor-mediated modulation of hypocretin/orexin neurones in mouse hypothalamus.
    Xie X; Crowder TL; Yamanaka A; Morairty SR; Lewinter RD; Sakurai T; Kilduff TS
    J Physiol; 2006 Jul; 574(Pt 2):399-414. PubMed ID: 16627567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ.
    Burdakov D; Gerasimenko O; Verkhratsky A
    J Neurosci; 2005 Mar; 25(9):2429-33. PubMed ID: 15745970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vasopressin increases locomotion through a V1a receptor in orexin/hypocretin neurons: implications for water homeostasis.
    Tsunematsu T; Fu LY; Yamanaka A; Ichiki K; Tanoue A; Sakurai T; van den Pol AN
    J Neurosci; 2008 Jan; 28(1):228-38. PubMed ID: 18171940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response.
    Winsky-Sommerer R; Yamanaka A; Diano S; Borok E; Roberts AJ; Sakurai T; Kilduff TS; Horvath TL; de Lecea L
    J Neurosci; 2004 Dec; 24(50):11439-48. PubMed ID: 15601950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline).
    Brown RE; Sergeeva OA; Eriksson KS; Haas HL
    J Neurosci; 2002 Oct; 22(20):8850-9. PubMed ID: 12388591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cholecystokinin activates orexin/hypocretin neurons through the cholecystokinin A receptor.
    Tsujino N; Yamanaka A; Ichiki K; Muraki Y; Kilduff TS; Yagami K; Takahashi S; Goto K; Sakurai T
    J Neurosci; 2005 Aug; 25(32):7459-69. PubMed ID: 16093397
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of thalamic neuron excitability by orexins.
    Govindaiah G; Cox CL
    Neuropharmacology; 2006 Sep; 51(3):414-25. PubMed ID: 16713607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversed synaptic effects of hypocretin and NPY mediated by excitatory GABA-dependent synaptic activity in developing MCH neurons.
    Li Y; Xu Y; van den Pol AN
    J Neurophysiol; 2013 Mar; 109(6):1571-8. PubMed ID: 23255725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuroendocrine proopiomelanocortin neurons are excited by hypocretin/orexin.
    Acuna-Goycolea C; van den Pol AN
    J Neurosci; 2009 Feb; 29(5):1503-13. PubMed ID: 19193897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of bombesin receptor subtype-3 influences activity of orexin neurons by both direct and indirect pathways.
    Furutani N; Hondo M; Tsujino N; Sakurai T
    J Mol Neurosci; 2010 Sep; 42(1):106-11. PubMed ID: 20467915
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Orexin peptides enhance median preoptic nucleus neuronal excitability via postsynaptic membrane depolarization and enhancement of glutamatergic afferents.
    Kolaj M; Coderre E; Renaud LP
    Neuroscience; 2008 Sep; 155(4):1212-20. PubMed ID: 18674591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.