These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19204189)

  • 21. Paradoxical activation of an inwardly rectifying potassium channel mutant by spermine: "(b)locking" open the bundle crossing gate.
    Vilin YY; Nunez JJ; Kim RY; Dake GR; Kurata HT
    Mol Pharmacol; 2013 Oct; 84(4):572-81. PubMed ID: 23887925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational changes upon gating of KirBac1.1 into an open-activated state revealed by solid-state NMR and functional assays.
    Amani R; Borcik CG; Khan NH; Versteeg DB; Yekefallah M; Do HQ; Coats HR; Wylie BJ
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2938-2947. PubMed ID: 31980523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Moving the pH gate of the Kir1.1 inward rectifier channel.
    Nanazashvili M; Li H; Palmer LG; Walters DE; Sackin H
    Channels (Austin); 2007; 1(1):21-8. PubMed ID: 19170254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carboxy-terminal determinants of conductance in inward-rectifier K channels.
    Zhang YY; Robertson JL; Gray DA; Palmer LG
    J Gen Physiol; 2004 Dec; 124(6):729-39. PubMed ID: 15572348
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ser165 in the second transmembrane region of the Kir2.1 channel determines its susceptibility to blockade by intracellular Mg2+.
    Fujiwara Y; Kubo Y
    J Gen Physiol; 2002 Nov; 120(5):677-93. PubMed ID: 12407079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct modulation of Kir channel gating by membrane phosphatidylinositol 4,5-bisphosphate.
    Enkvetchakul D; Jeliazkova I; Nichols CG
    J Biol Chem; 2005 Oct; 280(43):35785-8. PubMed ID: 16144841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enantioselective protein-sterol interactions mediate regulation of both prokaryotic and eukaryotic inward rectifier K+ channels by cholesterol.
    D'Avanzo N; Hyrc K; Enkvetchakul D; Covey DF; Nichols CG
    PLoS One; 2011 Apr; 6(4):e19393. PubMed ID: 21559361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-pore electrostatics in inward-rectifier potassium channels.
    Robertson JL; Palmer LG; Roux B
    J Gen Physiol; 2008 Dec; 132(6):613-32. PubMed ID: 19001143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inward rectification by polyamines in mouse Kir2.1 channels: synergy between blocking components.
    Xie LH; John SA; Weiss JN
    J Physiol; 2003 Jul; 550(Pt 1):67-82. PubMed ID: 12740427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An inward rectifier K(+) channel at the basolateral membrane of the mouse distal convoluted tubule: similarities with Kir4-Kir5.1 heteromeric channels.
    Lourdel S; Paulais M; Cluzeaud F; Bens M; Tanemoto M; Kurachi Y; Vandewalle A; Teulon J
    J Physiol; 2002 Jan; 538(Pt 2):391-404. PubMed ID: 11790808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Short variable sequence acquired in evolution enables selective inhibition of various inward-rectifier K+ channels.
    Ramu Y; Klem AM; Lu Z
    Biochemistry; 2004 Aug; 43(33):10701-9. PubMed ID: 15311931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Filter flexibility and distortion in a bacterial inward rectifier K+ channel: simulation studies of KirBac1.1.
    Domene C; Grottesi A; Sansom MS
    Biophys J; 2004 Jul; 87(1):256-67. PubMed ID: 15240462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elementary properties of Kir2.1, a strong inwardly rectifying K(+) channel expressed by pigeon vestibular type II hair cells.
    Zampini V; Masetto S; Correia MJ
    Neuroscience; 2008 Sep; 155(4):1250-61. PubMed ID: 18652879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of inward rectifier K channel activity by lipid tethering of cytoplasmic domains.
    Enkvetchakul D; Jeliazkova I; Bhattacharyya J; Nichols CG
    J Gen Physiol; 2007 Sep; 130(3):329-34. PubMed ID: 17698595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for sequential ion-binding loci along the inner pore of the IRK1 inward-rectifier K+ channel.
    Shin HG; Xu Y; Lu Z
    J Gen Physiol; 2005 Aug; 126(2):123-35. PubMed ID: 16043774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Voltage-dependent gating and block by internal spermine of the murine inwardly rectifying K+ channel, Kir2.1.
    Matsuda H; Oishi K; Omori K
    J Physiol; 2003 Apr; 548(Pt 2):361-71. PubMed ID: 12640008
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of conserved glycines in pH gating of Kir1.1 (ROMK).
    Sackin H; Nanazashvili M; Palmer LG; Li H
    Biophys J; 2006 May; 90(10):3582-9. PubMed ID: 16533837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tamoxifen inhibits inward rectifier K+ 2.x family of inward rectifier channels by interfering with phosphatidylinositol 4,5-bisphosphate-channel interactions.
    Ponce-Balbuena D; López-Izquierdo A; Ferrer T; Rodríguez-Menchaca AA; Aréchiga-Figueroa IA; Sánchez-Chapula JA
    J Pharmacol Exp Ther; 2009 Nov; 331(2):563-73. PubMed ID: 19654266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PIP(2)-binding site in Kir channels: definition by multiscale biomolecular simulations.
    Stansfeld PJ; Hopkinson R; Ashcroft FM; Sansom MS
    Biochemistry; 2009 Nov; 48(46):10926-33. PubMed ID: 19839652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ion channel expression in PMA-differentiated human THP-1 macrophages.
    DeCoursey TE; Kim SY; Silver MR; Quandt FN
    J Membr Biol; 1996 Jul; 152(2):141-57. PubMed ID: 9139125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.