BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 1920423)

  • 1. Composite of A and F-type 5' terminal sequences defines a subfamily of mouse LINE-1 elements.
    Adey NB; Schichman SA; Hutchison CA; Edgell MH
    J Mol Biol; 1991 Sep; 221(2):367-73. PubMed ID: 1920423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The F-type 5' motif of mouse L1 elements: a major class of L1 termini similar to the A-type in organization but unrelated in sequence.
    Padgett RW; Hutchison CA; Edgell MH
    Nucleic Acids Res; 1988 Jan; 16(2):739-49. PubMed ID: 3340553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L1 A-monomer tandem arrays have expanded during the course of mouse L1 evolution.
    Schichman SA; Adey NB; Edgell MH; Hutchison CA
    Mol Biol Evol; 1993 May; 10(3):552-70. PubMed ID: 8336543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of a functional ancestral sequence and definition of the 5' end of A-type mouse L1 elements.
    Shehee WR; Chao SF; Loeb DD; Comer MB; Hutchison CA; Edgell MH
    J Mol Biol; 1987 Aug; 196(4):757-67. PubMed ID: 3681977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unrelated sequences at the 5' end of mouse LINE-1 repeated elements define two distinct subfamilies.
    Wincker P; Jubier-Maurin V; Roizès G
    Nucleic Acids Res; 1987 Nov; 15(21):8593-606. PubMed ID: 3684566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sequence of a large L1Md element reveals a tandemly repeated 5' end and several features found in retrotransposons.
    Loeb DD; Padgett RW; Hardies SC; Shehee WR; Comer MB; Edgell MH; Hutchison CA
    Mol Cell Biol; 1986 Jan; 6(1):168-82. PubMed ID: 3023821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strand-specific LINE-1 transcription in mouse F9 cells originates from the youngest phylogenetic subgroup of LINE-1 elements.
    Schichman SA; Severynse DM; Edgell MH; Hutchison CA
    J Mol Biol; 1992 Apr; 224(3):559-74. PubMed ID: 1314898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Duplicated region of the mouse genome containing a cytoplasmic gamma-actin processed pseudogene associated with long interspersed repetitive elements.
    Begg CE; Delius H; Leader DP
    J Mol Biol; 1988 Oct; 203(3):677-87. PubMed ID: 2974886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationships between the 5' end repeats and the largest members of the L1 interspersed repeated family in the mouse genome.
    Jubier-Maurin V; Wincker P; Cuny G; Roizès G
    Nucleic Acids Res; 1987 Sep; 15(18):7395-410. PubMed ID: 3658697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empty and occupied insertion site of the truncated LINE-1 repeat located in the mouse serum albumin-encoding gene.
    Boccaccio C; Deschatrette J; Meunier-Rotival M
    Gene; 1990 Apr; 88(2):181-6. PubMed ID: 1971802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of transcriptional regulatory activity within the 5' A-type monomer sequence of the mouse LINE-1 retroposon.
    Severynse DM; Hutchison CA; Edgell MH
    Mamm Genome; 1992; 2(1):41-50. PubMed ID: 1311970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interference of DNA sequence divergence with precise recombinational DNA repair in mammalian cells.
    Belmaaza A; Milot E; Villemure JF; Chartrand P
    EMBO J; 1994 Nov; 13(22):5355-60. PubMed ID: 7957101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new 5' sequence associated with mouse L1 elements is representative of a major class of L1 termini.
    Jubier-Maurin V; Cuny G; Laurent AM; Paquereau L; Roizes G
    Mol Biol Evol; 1992 Jan; 9(1):41-55. PubMed ID: 1552840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel active L1 retrotransposon subfamily in the mouse.
    Goodier JL; Ostertag EM; Du K; Kazazian HH
    Genome Res; 2001 Oct; 11(10):1677-85. PubMed ID: 11591644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic exchange between endogenous and exogenous LINE-1 repetitive elements in mouse cells.
    Belmaaza A; Wallenburg JC; Brouillette S; Gusew N; Chartrand P
    Nucleic Acids Res; 1990 Nov; 18(21):6385-91. PubMed ID: 1978749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of highly repetitive sequences of Arabidopsis thaliana.
    Simoens CR; Gielen J; Van Montagu M; Inzé D
    Nucleic Acids Res; 1988 Jul; 16(14B):6753-66. PubMed ID: 3405748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subtype classification and functional annotation of L1Md retrotransposon promoters.
    Zhou M; Smith AD
    Mob DNA; 2019; 10():14. PubMed ID: 31007728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A highly abundant transcript in adult murine cerebellar granule cells contains repetitive sequences homologous to L1.
    Schaal H; Goldowitz D; Heinlein UA; Unterbeck A; Ruppert C; Papenbrock T; Müller-Hill B; Vielmetter W; Wille W
    J Neurosci; 1987 Jul; 7(7):2041-8. PubMed ID: 2441004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A transposon with an unusual LTR arrangement from Chlamydomonas reinhardtii contains an internal tandem array of 76 bp repeats.
    Day A; Rochaix JD
    Nucleic Acids Res; 1991 Mar; 19(6):1259-66. PubMed ID: 1851555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element.
    Dombroski BA; Scott AF; Kazazian HH
    Proc Natl Acad Sci U S A; 1993 Jul; 90(14):6513-7. PubMed ID: 8393568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.