These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 19204278)

  • 21. Calculating pKa values in the cAMP-dependent protein kinase: the effect of conformational change and ligand binding.
    Bjarnadottir U; Nielsen JE
    Protein Sci; 2010 Dec; 19(12):2485-97. PubMed ID: 20954248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A binary complex of the catalytic subunit of cAMP-dependent protein kinase and adenosine further defines conformational flexibility.
    Narayana N; Cox S; Nguyen-huu X; Ten Eyck LF; Taylor SS
    Structure; 1997 Jul; 5(7):921-35. PubMed ID: 9261084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for an internal entropy contribution to phosphoryl transfer: a study of domain closure, backbone flexibility, and the catalytic cycle of cAMP-dependent protein kinase.
    Li F; Gangal M; Juliano C; Gorfain E; Taylor SS; Johnson DA
    J Mol Biol; 2002 Jan; 315(3):459-69. PubMed ID: 11786025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorylation and flexibility of cyclic-AMP-dependent protein kinase (PKA) using (31)P NMR spectroscopy.
    Seifert MH; Breitenlechner CB; Bossemeyer D; Huber R; Holak TA; Engh RA
    Biochemistry; 2002 May; 41(19):5968-77. PubMed ID: 11993991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assembly of allosteric macromolecular switches: lessons from PKA.
    Taylor SS; Ilouz R; Zhang P; Kornev AP
    Nat Rev Mol Cell Biol; 2012 Oct; 13(10):646-58. PubMed ID: 22992589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-resolution crystal structure of cAMP-dependent protein kinase from Cricetulus griseus.
    Kudlinzki D; Linhard VL; Saxena K; Sreeramulu S; Gande S; Schieborr U; Dreyer M; Schwalbe H
    Acta Crystallogr F Struct Biol Commun; 2015 Aug; 71(Pt 8):1088-93. PubMed ID: 26249705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NMR mapping of protein conformational landscapes using coordinated behavior of chemical shifts upon ligand binding.
    Cembran A; Kim J; Gao J; Veglia G
    Phys Chem Chem Phys; 2014 Apr; 16(14):6508-18. PubMed ID: 24604024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic features of cAMP-dependent protein kinase revealed by apoenzyme crystal structure.
    Akamine P; Madhusudan ; Wu J; Xuong NH; Ten Eyck LF; Taylor SS
    J Mol Biol; 2003 Mar; 327(1):159-71. PubMed ID: 12614615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalytic independent functions of a protein kinase as revealed by a kinase-dead mutant: study of the Lys72His mutant of cAMP-dependent kinase.
    Iyer GH; Garrod S; Woods VL; Taylor SS
    J Mol Biol; 2005 Sep; 351(5):1110-22. PubMed ID: 16054648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PKA type IIalpha holoenzyme reveals a combinatorial strategy for isoform diversity.
    Wu J; Brown SH; von Daake S; Taylor SS
    Science; 2007 Oct; 318(5848):274-9. PubMed ID: 17932298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding cAMP-dependent allostery by NMR spectroscopy: comparative analysis of the EPAC1 cAMP-binding domain in its apo and cAMP-bound states.
    Mazhab-Jafari MT; Das R; Fotheringham SA; SilDas S; Chowdhury S; Melacini G
    J Am Chem Soc; 2007 Nov; 129(46):14482-92. PubMed ID: 17973384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Allosteric network of cAMP-dependent protein kinase revealed by mutation of Tyr204 in the P+1 loop.
    Yang J; Garrod SM; Deal MS; Anand GS; Woods VL; Taylor S
    J Mol Biol; 2005 Feb; 346(1):191-201. PubMed ID: 15663937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mapping substrate-induced conformational changes in cAMP-dependent protein kinase by protein footprinting.
    Cheng X; Shaltiel S; Taylor SS
    Biochemistry; 1998 Oct; 37(40):14005-13. PubMed ID: 9760235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The structure of dimeric ROCK I reveals the mechanism for ligand selectivity.
    Jacobs M; Hayakawa K; Swenson L; Bellon S; Fleming M; Taslimi P; Doran J
    J Biol Chem; 2006 Jan; 281(1):260-8. PubMed ID: 16249185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computer modeling of the dynamic properties of the cAMP-dependent protein kinase catalytic subunit.
    Izvolski A; Järv J; Kuznetsov A
    Comput Biol Chem; 2013 Dec; 47():66-70. PubMed ID: 23938955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of N-myristylation and ligand binding on the flexibility of the catalytic subunit of protein kinase A.
    Bastidas AC; Pierce LC; Walker RC; Johnson DA; Taylor SS
    Biochemistry; 2013 Sep; 52(37):6368-79. PubMed ID: 24003983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large-scale allosteric conformational transitions of adenylate kinase appear to involve a population-shift mechanism.
    Arora K; Brooks CL
    Proc Natl Acad Sci U S A; 2007 Nov; 104(47):18496-501. PubMed ID: 18000050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutation of a kinase allosteric node uncouples dynamics linked to phosphotransfer.
    Ahuja LG; Kornev AP; McClendon CL; Veglia G; Taylor SS
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):E931-E940. PubMed ID: 28115705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of PKA via asymmetric allosteric coupling of structurally conserved cyclic nucleotide binding domains.
    Hao Y; England JP; Bellucci L; Paci E; Hodges HC; Taylor SS; Maillard RA
    Nat Commun; 2019 Sep; 10(1):3984. PubMed ID: 31484930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.