These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 19204952)
1. Nonionic surfactant-capped gold nanoparticles for selective enrichment of aminothiols prior to CE with UV absorption detection. Li MD; Cheng TL; Tseng WL Electrophoresis; 2009 Jan; 30(2):388-95. PubMed ID: 19204952 [TBL] [Abstract][Full Text] [Related]
2. Selective enrichment of aminothiols using polysorbate 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence. Shen CC; Tseng WL; Hsieh MM J Chromatogr A; 2009 Jan; 1216(2):288-93. PubMed ID: 19058808 [TBL] [Abstract][Full Text] [Related]
3. Gold nanoparticle extraction followed by capillary electrophoresis to determine the total, free, and protein-bound aminothiols in plasma. Chang CW; Tseng WL Anal Chem; 2010 Apr; 82(7):2696-702. PubMed ID: 20201506 [TBL] [Abstract][Full Text] [Related]
4. Highly selective detection of histidine using o-phthaldialdehyde derivatization after the removal of aminothiols through Tween 20-capped gold nanoparticles. Huang CC; Tseng WL Analyst; 2009 Aug; 134(8):1699-705. PubMed ID: 20448940 [TBL] [Abstract][Full Text] [Related]
5. Role of fluorosurfactant-modified gold nanoparticles in selective detection of homocysteine thiolactone: remover and sensor. Huang CC; Tseng WL Anal Chem; 2008 Aug; 80(16):6345-50. PubMed ID: 18613648 [TBL] [Abstract][Full Text] [Related]
6. Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine. Wu HP; Huang CC; Cheng TL; Tseng WL Talanta; 2008 Jul; 76(2):347-52. PubMed ID: 18585288 [TBL] [Abstract][Full Text] [Related]
7. Fluorescent sensing of homocysteine in urine: using fluorosurfactant-capped gold nanoparticles and o-Phthaldialdehyde. Lin JH; Chang CW; Tseng WL Analyst; 2010 Jan; 135(1):104-10. PubMed ID: 20024188 [TBL] [Abstract][Full Text] [Related]
8. Selective extraction of thiol-containing peptides in seawater using Tween 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence. Shen CC; Tseng WL; Hsieh MM J Chromatogr A; 2012 Jan; 1220():162-8. PubMed ID: 22186493 [TBL] [Abstract][Full Text] [Related]
9. Selective extraction of melamine using 11-mercaptoundecanoic acid-capped gold nanoparticles followed by capillary electrophoresis. Chang CW; Chu SP; Tseng WL J Chromatogr A; 2010 Dec; 1217(49):7800-6. PubMed ID: 21035123 [TBL] [Abstract][Full Text] [Related]
10. Nile Red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry. Huang YF; Chang HT Anal Chem; 2006 Mar; 78(5):1485-93. PubMed ID: 16503598 [TBL] [Abstract][Full Text] [Related]
11. Specific detection of cysteine and homocysteine in biological fluids by tuning the pH values of fluorosurfactant-stabilized gold colloidal solution. Xiao Q; Shang F; Xu X; Li Q; Lu C; Lin JM Biosens Bioelectron; 2011 Dec; 30(1):211-5. PubMed ID: 21978483 [TBL] [Abstract][Full Text] [Related]
12. [Simultaneous determination of three aminothiols in human plasma by high performance liquid chromatography with gold nanoparticle enrichment]. Meng F; Liu C; Chen M; Lu X; Zhao S Se Pu; 2012 Oct; 30(10):1056-61. PubMed ID: 23383495 [TBL] [Abstract][Full Text] [Related]
13. Hg2+-mediated aggregation of gold nanoparticles for colorimetric screening of biothiols. Xu H; Wang Y; Huang X; Li Y; Zhang H; Zhong X Analyst; 2012 Feb; 137(4):924-31. PubMed ID: 22179771 [TBL] [Abstract][Full Text] [Related]
14. Nonionic surfactant-capped gold nanoparticles as postcolumn reagents for high-performance liquid chromatography assay of low-molecular-mass biothiols. Lu C; Zu Y; Yam VW J Chromatogr A; 2007 Sep; 1163(1-2):328-32. PubMed ID: 17689546 [TBL] [Abstract][Full Text] [Related]
15. Detection of aminothiols through surface-assisted laser desorption/ionization mass spectrometry using mixed gold nanoparticles. Chiang NC; Chiang CK; Lin ZH; Chiu TC; Chang HT Rapid Commun Mass Spectrom; 2009 Oct; 23(19):3063-8. PubMed ID: 19705381 [TBL] [Abstract][Full Text] [Related]
16. Capillary electrophoretic study of thiolated alpha-cyclodextrin-capped gold nanoparticles with tetraalkylammonium ions. Paau MC; Lo CK; Yang X; Choi MM J Chromatogr A; 2009 Nov; 1216(48):8557-62. PubMed ID: 19853853 [TBL] [Abstract][Full Text] [Related]
17. Gold nanoparticle extraction followed by o-phthaldialdehyde derivatization for fluorescence sensing of different forms of homocysteine in plasma. Lai YJ; Tseng WL Talanta; 2012 Mar; 91():103-9. PubMed ID: 22365687 [TBL] [Abstract][Full Text] [Related]
18. Fluorosurfactant-prepared triangular gold nanoparticles as postcolumn chemiluminescence reagents for high-performance liquid chromatography assay of low molecular weight aminothiols in biological fluids. Li Q; Shang F; Lu C; Zheng Z; Lin JM J Chromatogr A; 2011 Dec; 1218(50):9064-70. PubMed ID: 22055524 [TBL] [Abstract][Full Text] [Related]
19. Inner filter effect of gold nanoparticles on the fluorescence of quantum dots and its application to biological aminothiols detection. Xu L; Li B; Jin Y Talanta; 2011 Apr; 84(2):558-64. PubMed ID: 21376987 [TBL] [Abstract][Full Text] [Related]
20. Specific postcolumn detection method for HPLC assay of homocysteine based on aggregation of fluorosurfactant-capped gold nanoparticles. Lu C; Zu Y; Yam VW Anal Chem; 2007 Jan; 79(2):666-72. PubMed ID: 17222035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]