These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19205193)

  • 21. Heterogeneous catalysis of a copper-coated atomic force microscopy tip for direct-write click chemistry.
    Paxton WF; Spruell JM; Stoddart JF
    J Am Chem Soc; 2009 May; 131(19):6692-4. PubMed ID: 19388653
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A flexible, highly stable electrochemical scanning probe microscope for nanoscale studies at the solid-liquid interface.
    Stieg AZ; Rasool HI; Gimzewski JK
    Rev Sci Instrum; 2008 Oct; 79(10):103701. PubMed ID: 19044713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards an understanding of the atomic scale magnetic contrast formation in NC-AFM: a tip material dependent MExFM study on NiO(001).
    Schwarz A; Kaiser U; Wiesendanger R
    Nanotechnology; 2009 Jul; 20(26):264017. PubMed ID: 19509457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechatronic Development and Vision Feedback Control of a Nanorobotics Manipulation System inside SEM for Nanodevice Assembly.
    Yang Z; Wang Y; Yang B; Li G; Chen T; Nakajima M; Sun L; Fukuda T
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An integrated approach to piezoactuator positioning in high-speed atomic force microscope imaging.
    Yan Y; Wu Y; Zou Q; Su C
    Rev Sci Instrum; 2008 Jul; 79(7):073704. PubMed ID: 18681705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling and validation of the van der Waals force during the adhesion of nanoscale objects to rough surfaces: a detailed description.
    Jaiswal RP; Kumar G; Kilroy CM; Beaudoin SP
    Langmuir; 2009 Sep; 25(18):10612-23. PubMed ID: 19735133
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rotational positioning system adapted to atomic force microscope for measuring anisotropic surface properties.
    Liao HS; Juang BJ; Chang WC; Lai WC; Huang KY; Chang CS
    Rev Sci Instrum; 2011 Nov; 82(11):113710. PubMed ID: 22128987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wear characteristics of diamond-coated atomic force microscope probe.
    Chung KH; Kim DE
    Ultramicroscopy; 2007 Dec; 108(1):1-10. PubMed ID: 17367934
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical properties of plasma membrane and nuclear envelope measured by scanning probe microscope.
    Yokokawa M; Takeyasu K; Yoshimura SH
    J Microsc; 2008 Oct; 232(1):82-90. PubMed ID: 19017204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical atomic-force microscopy using a tip-attached redox mediator. Proof-of-concept and perspectives for functional probing of nanosystems.
    Anne A; Demaille C; Goyer C
    ACS Nano; 2009 Apr; 3(4):819-27. PubMed ID: 19281224
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measuring the charge state of an adatom with noncontact atomic force microscopy.
    Gross L; Mohn F; Liljeroth P; Repp J; Giessibl FJ; Meyer G
    Science; 2009 Jun; 324(5933):1428-31. PubMed ID: 19520956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In situ manipulation of scanning tunneling microscope tips without tip holder.
    Raad C; Graf KH; Ebert P
    Rev Sci Instrum; 2010 Jan; 81(1):013706. PubMed ID: 20113106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The study on the atomic force microscopy base nanoscale electrical discharge machining.
    Huang JC; Chen CM
    Scanning; 2012; 34(3):191-9. PubMed ID: 21898457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical machining of gold microstructures in LiCl/dimethyl sulfoxide.
    Ma X; Bán A; Schuster R
    Chemphyschem; 2010 Feb; 11(3):616-21. PubMed ID: 20017182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sub-10-nm patterning of oligo(ethylene glycol) monolayers on silicon surfaces via local oxidation using a conductive atomic force microscope.
    Qin G; Cai C
    Nanotechnology; 2009 Sep; 20(35):355306. PubMed ID: 19671957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Active drift compensation applied to nanorod manipulation with an atomic force microscope.
    Tranvouez E; Boer-Duchemin E; Comtet G; Dujardin G
    Rev Sci Instrum; 2007 Nov; 78(11):115103. PubMed ID: 18052500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insight into mechanics of AFM tip-based nanomachining: bending of cantilevers and machined grooves.
    Al-Musawi RS; Brousseau EB; Geng Y; Borodich FM
    Nanotechnology; 2016 Sep; 27(38):385302. PubMed ID: 27532247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a precision indentation and scratching system with a tool force and displacement control module.
    Park JJ; Kwon K; Bang J; Cho N; Han CS; Choi NS
    Rev Sci Instrum; 2007 Apr; 78(4):045102. PubMed ID: 17477688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A metrological large range atomic force microscope with improved performance.
    Dai G; Wolff H; Pohlenz F; Danzebrink HU
    Rev Sci Instrum; 2009 Apr; 80(4):043702. PubMed ID: 19405661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-cost nanomanipulator for in situ experiments in a SEM.
    Nakabayashi D; Silva PC; González JC; Rodrigues V; Ugarte D
    Microsc Microanal; 2006 Aug; 12(4):311-6. PubMed ID: 16842643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.