These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19205198)

  • 1. Transmission electron microscopy of ZnO nanotube arrays etched from electrodeposited ZnO nanorods.
    Su J; Che R; She G; Duan X; Shi W
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6306-9. PubMed ID: 19205198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy.
    Yan C; Xue D
    J Phys Chem B; 2006 Dec; 110(51):25850-5. PubMed ID: 17181231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates.
    Sun Y; Riley DJ; Ashfold MN
    J Phys Chem B; 2006 Aug; 110(31):15186-92. PubMed ID: 16884233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO(2) nanotube arrays electrode for azo dye degradation.
    Zhang Z; Yuan Y; Liang L; Cheng Y; Shi G; Jin L
    J Hazard Mater; 2008 Oct; 158(2-3):517-22. PubMed ID: 18440136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanotip fabrication of zinc oxide nanorods and their enhanced field emission properties.
    Yao IC; Lin P; Tseng TY
    Nanotechnology; 2009 Mar; 20(12):125202. PubMed ID: 19420460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZnO@Co hybrid nanotube arrays growth from electrochemical deposition: structural, optical, photocatalytic and magnetic properties.
    Fan LY; Yu SH
    Phys Chem Chem Phys; 2009 May; 11(19):3710-7. PubMed ID: 19421482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterned fabrication of single ZnO nanorods and measurement of their optoelectrical characteristics.
    Yu CW; Lai SH; Wang TY; Lan MD; Ho MS
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4377-81. PubMed ID: 19049028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-temperature growth of ZnO nanorods by chemical bath deposition.
    Yi SH; Choi SK; Jang JM; Kim JA; Jung WG
    J Colloid Interface Sci; 2007 Sep; 313(2):705-10. PubMed ID: 17570384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective oxygen-plasma-etching technique for the formation of ZnO-FTO heterostructure nanotubes and their rectified photocatalytic properties.
    Chantarat N; Chen YW; Lin CC; Chiang MC; Chen SY
    Inorg Chem; 2010 Dec; 49(23):11077-83. PubMed ID: 21067176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices.
    Han J; Fan F; Xu C; Lin S; Wei M; Duan X; Wang ZL
    Nanotechnology; 2010 Oct; 21(40):405203. PubMed ID: 20829568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays.
    Kar S; Dev A; Chaudhuri S
    J Phys Chem B; 2006 Sep; 110(36):17848-53. PubMed ID: 16956271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile and large-scale production of ZnO/Zn-Al layered double hydroxide hierarchical heterostructures.
    Liu J; Huang X; Li Y; Sulieman KM; He X; Sun F
    J Phys Chem B; 2006 Nov; 110(43):21865-72. PubMed ID: 17064152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aligned arrays of nanotubes and segmented nanotubes on substrates fabricated by electrodeposition onto nanorods.
    Sander MS; Gao H
    J Am Chem Soc; 2005 Sep; 127(35):12158-9. PubMed ID: 16131158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers.
    Willander M; Nur O; Zhao QX; Yang LL; Lorenz M; Cao BQ; Zúñiga Pérez J; Czekalla C; Zimmermann G; Grundmann M; Bakin A; Behrends A; Al-Suleiman M; El-Shaer A; Che Mofor A; Postels B; Waag A; Boukos N; Travlos A; Kwack HS; Guinard J; Le Si Dang D
    Nanotechnology; 2009 Aug; 20(33):332001. PubMed ID: 19636090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays.
    Shimpi P; Gao PX; Goberman DG; Ding Y
    Nanotechnology; 2009 Mar; 20(12):125608. PubMed ID: 19420477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled growth of well-aligned ZnO nanorod array using a novel solution method.
    Tak Y; Yong K
    J Phys Chem B; 2005 Oct; 109(41):19263-9. PubMed ID: 16853488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable synthesis and optical properties of novel ZnO cone arrays via vapor transport at low temperature.
    Han X; Wang G; Jie J; Choy WC; Luo Y; Yuk TI; Hou JG
    J Phys Chem B; 2005 Feb; 109(7):2733-8. PubMed ID: 16851281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable preferential-etching synthesis of ZnO nanotube arrays on SiO2 substrate for solid-phase microextraction.
    Li TM; Lin ZA; Zhang L; Chen G
    Analyst; 2010 Oct; 135(10):2694-9. PubMed ID: 20714516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateral arrays of vertical ZnO nanowalls on a periodically polarity-inverted ZnO template.
    Lee SH; Minegishi T; Ha JS; Park JS; Lee HJ; Lee HJ; Shiku H; Matsue T; Hong SK; Jeon H; Yao T
    Nanotechnology; 2009 Jun; 20(23):235304. PubMed ID: 19448285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile electrochemical synthesis of hexagonal Cu2O nanotube arrays and their application.
    Zhong JH; Li GR; Wang ZL; Ou YN; Tong YX
    Inorg Chem; 2011 Feb; 50(3):757-63. PubMed ID: 21182331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.