BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 19205622)

  • 1. Different carbon sources affect lifespan and protein redox state during Saccharomyces cerevisiae chronological ageing.
    Magherini F; Carpentieri A; Amoresano A; Gamberi T; De Filippo C; Rizzetto L; Biagini M; Pucci P; Modesti A
    Cell Mol Life Sci; 2009 Mar; 66(5):933-47. PubMed ID: 19205622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of recombinant Saccharomyces cerevisiae upon iron deficiency induced via human H-ferritin production.
    Seo HY; Chang YJ; Chung YJ; Kim KS
    J Microbiol Biotechnol; 2008 Aug; 18(8):1368-76. PubMed ID: 18756096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of proteins containing cysteine residues that are sensitive to oxidation by hydrogen peroxide at neutral pH.
    Kim JR; Yoon HW; Kwon KS; Lee SR; Rhee SG
    Anal Biochem; 2000 Aug; 283(2):214-21. PubMed ID: 10906242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronological lifespan of stationary phase yeast cells; a model for investigating the factors that might influence the ageing of postmitotic tissues in higher organisms.
    MacLean M; Harris N; Piper PW
    Yeast; 2001 Apr; 18(6):499-509. PubMed ID: 11284006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics approaches to study the redox state of cysteine-containing proteins.
    Camerini S; Polci ML; Bachi A
    Ann Ist Super Sanita; 2005; 41(4):451-7. PubMed ID: 16569913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK; Wright PC
    J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Cheng JS; Zhou X; Ding MZ; Yuan YJ
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression, characterization and regulation of a Saccharomyces cerevisiae monothiol glutaredoxin (Grx6) gene in Schizosaccharomyces pombe.
    Lee JH; Kim K; Park EH; Ahn K; Lim CJ
    Mol Cells; 2007 Dec; 24(3):316-22. PubMed ID: 18182845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions.
    Lushchak V; Semchyshyn H; Mandryk S; Lushchak O
    Arch Biochem Biophys; 2005 Sep; 441(1):35-40. PubMed ID: 16084798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis.
    Qin G; Meng X; Wang Q; Tian S
    J Proteome Res; 2009 May; 8(5):2449-62. PubMed ID: 19239264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of reduced cysteine in oenological cell wall fractions of Saccharomyces cerevisiae.
    Tirelli A; Fracassetti D; De Noni I
    J Agric Food Chem; 2010 Apr; 58(8):4565-70. PubMed ID: 20359223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for yeast glutaredoxin genes in selenite-mediated oxidative stress.
    Lewinska A; Bartosz G
    Fungal Genet Biol; 2008 Aug; 45(8):1182-7. PubMed ID: 18614384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genetically encoded probe for cysteine sulfenic acid protein modification in vivo.
    Takanishi CL; Ma LH; Wood MJ
    Biochemistry; 2007 Dec; 46(50):14725-32. PubMed ID: 18020457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical dissection of an essential redox switch in yeast.
    Paulsen CE; Carroll KS
    Chem Biol; 2009 Feb; 16(2):217-25. PubMed ID: 19230722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of the 20S proteasome maturase, Ump1p, leads to the instability of mtDNA in Saccharomyces cerevisiae.
    Malc E; Dzierzbicki P; Kaniak A; Skoneczna A; Ciesla Z
    Mutat Res; 2009 Oct; 669(1-2):95-103. PubMed ID: 19467248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extension of chronological lifespan by ScEcl1 depends on mitochondria in Saccharomyces cerevisiae.
    Azuma K; Ohtsuka H; Murakami H; Aiba H
    Biosci Biotechnol Biochem; 2012; 76(10):1938-42. PubMed ID: 23047113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis of Saccharomyces cerevisiae.
    Pham TK; Wright PC
    Expert Rev Proteomics; 2007 Dec; 4(6):793-813. PubMed ID: 18067417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A proteomic view of Candida albicans yeast cell metabolism in exponential and stationary growth phases.
    Kusch H; Engelmann S; Bode R; Albrecht D; Morschhäuser J; Hecker M
    Int J Med Microbiol; 2008 Apr; 298(3-4):291-318. PubMed ID: 17588813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics and redox-proteomics of the effects of herbicides on a wild-type wine Saccharomyces cerevisiae strain.
    Braconi D; Bernardini G; Possenti S; Laschi M; Arena S; Scaloni A; Geminiani M; Sotgiu M; Santucci A
    J Proteome Res; 2009 Jan; 8(1):256-67. PubMed ID: 19032026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sensitive method for the quantitative measurement of protein thiol modification in response to oxidative stress.
    Landar A; Oh JY; Giles NM; Isom A; Kirk M; Barnes S; Darley-Usmar VM
    Free Radic Biol Med; 2006 Feb; 40(3):459-68. PubMed ID: 16443161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.