BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19205757)

  • 21. Cytochrome c Stabilization and Immobilization in Aerogels.
    Harper-Leatherman AS; Wallace JM; Rolison DR
    Methods Mol Biol; 2017; 1504():149-163. PubMed ID: 27770420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The redox couple of the cytochrome c cyanide complex: the contribution of heme iron ligation to the structural stability, chemical reactivity, and physiological behavior of horse cytochrome c.
    Schejter A; Ryan MD; Blizzard ER; Zhang C; Margoliash E; Feinberg BA
    Protein Sci; 2006 Feb; 15(2):234-41. PubMed ID: 16434742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Disruption of a hydrogen bond network in human versus spider monkey cytochrome c affects heme crevice stability.
    Goldes ME; Jeakins-Cooley ME; McClelland LJ; Mou TC; Bowler BE
    J Inorg Biochem; 2016 May; 158():62-69. PubMed ID: 26775610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Equilibrium studies of the effect of difference in sequence homology on the mechanism of denaturation of bovine and horse cytochromes-c.
    Moza B; Qureshi SH; Ahmad F
    Biochim Biophys Acta; 2003 Mar; 1646(1-2):49-56. PubMed ID: 12637011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytochrome C on silica nanoparticles: influence of nanoparticle size on protein structure, stability, and activity.
    Shang W; Nuffer JH; Muñiz-Papandrea VA; Colón W; Siegel RW; Dordick JS
    Small; 2009 Apr; 5(4):470-6. PubMed ID: 19189325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of conservative mutations (L94V and L94I) on the structure and stability of horse cytochrome c.
    Khan SH; Islam A; Hassan MI; Sharma S; Singh TP; Ahmad F
    Arch Biochem Biophys; 2017 Nov; 633():40-49. PubMed ID: 28851624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature-dependent conformational dynamics of cytochrome c: Implications in apoptosis.
    Muneeswaran G; Kartheeswaran S; Muthukumar K; Karunakaran C
    J Mol Graph Model; 2018 Jan; 79():140-148. PubMed ID: 29161635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability of uniformly labeled (
    Naiyer A; Khan B; Hussain A; Islam A; Alajmi MF; Hassan MI; Sundd M; Ahmad F
    Sci Rep; 2021 Mar; 11(1):6804. PubMed ID: 33762670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Refolding of urea denatured cytochrome c: Role of hydrophobic tail of the cationic gemini surfactants.
    Patel R; Mir MUH; Singh UK; Beg I; Islam A; Khan AB
    J Colloid Interface Sci; 2016 Dec; 484():205-212. PubMed ID: 27614044
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tripeptide Self-Assembled Monolayers as Biocompatible Surfaces for Cytochrome
    Clark RA; Yawitz T; Luchs L; Conrad T; Bartlebaugh O; Boyd H; Hargittai B
    Langmuir; 2023 Jan; 39(4):1414-1424. PubMed ID: 36688667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of molten globule state of cytochrome c at alkaline, native and acidic pH induced by butanol and SDS.
    Naeem A; Khan RH
    Int J Biochem Cell Biol; 2004 Nov; 36(11):2281-92. PubMed ID: 15313473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational substates of horse heart cytochrome c exhibit different thermal unfolding of the heme cavity.
    Schweitzer-Stenner R; Shah R; Hagarman A; Dragomir I
    J Phys Chem B; 2007 Aug; 111(32):9603-7. PubMed ID: 17628093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing the conformational changes and peroxidase-like activity of cytochrome c upon interaction with iron nanoparticles.
    Jafari Azad V; Kasravi S; Alizadeh Zeinabad H; Memar Bashi Aval M; Saboury AA; Rahimi A; Falahati M
    J Biomol Struct Dyn; 2017 Sep; 35(12):2565-2577. PubMed ID: 27632558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and thermodynamic characterisation of L94F mutant of horse cytochrome c.
    Khan SH; Kumar A; Prakash A; Taneja B; Islam A; Hassan MI; Ahmad F
    Int J Biol Macromol; 2016 Nov; 92():202-212. PubMed ID: 27377462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Denaturation and renaturation of self-assembled yeast iso-1-cytochrome c on Au.
    Chah S; Kumar CV; Hammond MR; Zare RN
    Anal Chem; 2004 Apr; 76(7):2112-7. PubMed ID: 15053677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conjugation of cytochrome c with ferrocene-terminated hyperbranched polymer and its influence on protein structure, conformation and function.
    Xiao F; Yue L; Li S; Li X
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jun; 162():69-74. PubMed ID: 26978787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remote Perturbations in Tertiary Contacts Trigger Ligation of Lysine to the Heme Iron in Cytochrome c.
    Gu J; Shin DW; Pletneva EV
    Biochemistry; 2017 Jun; 56(23):2950-2966. PubMed ID: 28474881
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A possible role for the covalent heme-protein linkage in cytochrome c revealed via comparison of N-acetylmicroperoxidase-8 and a synthetic, monohistidine-coordinated heme peptide.
    Cowley AB; Lukat-Rodgers GS; Rodgers KR; Benson DR
    Biochemistry; 2004 Feb; 43(6):1656-66. PubMed ID: 14769043
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural changes of horse heart ferricytochrome C induced by changes of ionic strength and anion binding.
    Shah R; Schweitzer-Stenner R
    Biochemistry; 2008 May; 47(18):5250-7. PubMed ID: 18407664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence and stability of the goat cytochrome c.
    Rahaman H; Khan KA; Hassan I; Wahid M; Singh SB; Singh TP; Moosavi-Movahedi AA; Ahmad F
    Biophys Chem; 2008 Nov; 138(1-2):23-8. PubMed ID: 18814948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.