These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 19205773)

  • 1. An introduction to wave intensity analysis.
    Parker KH
    Med Biol Eng Comput; 2009 Feb; 47(2):175-88. PubMed ID: 19205773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of wave speed and wave separation in the arteries using diameter and velocity.
    Feng J; Khir AW
    J Biomech; 2010 Feb; 43(3):455-62. PubMed ID: 19892359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reservoir and reservoir-less pressure effects on arterial waves in the canine aorta.
    Borlotti A; Park C; Parker KH; Khir AW
    J Hypertens; 2015 Mar; 33(3):564-74; discussion 574. PubMed ID: 25462708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of wave reflections in the arterial system using wave intensity: a novel method for predicting the timing and amplitude of reflected waves.
    Koh TW; Pepper JR; DeSouza AC; Parker KH
    Heart Vessels; 1998; 13(3):103-13. PubMed ID: 10328180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of wave speed and reflected waves in elastic tubes and bifurcations.
    Khir AW; Parker KH
    J Biomech; 2002 Jun; 35(6):775-83. PubMed ID: 12020997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The compression and expansion waves of the forward and backward flows: an in-vitro arterial model.
    Feng J; Khir AW
    Proc Inst Mech Eng H; 2008 May; 222(4):531-42. PubMed ID: 18595362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave potential and the one-dimensional windkessel as a wave-based paradigm of diastolic arterial hemodynamics.
    Mynard JP; Smolich JJ
    Am J Physiol Heart Circ Physiol; 2014 Aug; 307(3):H307-18. PubMed ID: 24878775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wave dissipation in flexible tubes in the time domain: in vitro model of arterial waves.
    Feng J; Long Q; Khir AW
    J Biomech; 2007; 40(10):2130-8. PubMed ID: 17166499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compression and expansion wavefront travel in canine ascending aortic flow: wave intensity analysis.
    Jones CJ; Sugawara M; Kondoh Y; Uchida K; Parker KH
    Heart Vessels; 2002 Mar; 16(3):91-8. PubMed ID: 12027238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arterial pulse wave velocity in coronary arteries.
    Aguado-Sierra J; Parker KH; Davies JE; Francis D; Hughes AD; Mayet J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():867-70. PubMed ID: 17946867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reservoir-wave separation and wave intensity analysis applied to carotid arteries: a hybrid 1D model to understand haemodynamics.
    Aguado-Sierra J; Davies JE; Hadjiloizou N; Francis D; Mayet J; Hughes AD; Parker KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1381-4. PubMed ID: 19162925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental validation of non-invasive and fluid density independent methods for the determination of local wave speed and arrival time of reflected wave.
    Li Y; Khir AW
    J Biomech; 2011 Apr; 44(7):1393-9. PubMed ID: 21367424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Usefulness of Proximal Coronary Wave Speed for Wave Intensity Analysis in Diseased Coronary Vessels.
    Casadonte L; Baan J; Piek JJ; Siebes M
    Front Cardiovasc Med; 2020; 7():133. PubMed ID: 32850986
    [No Abstract]   [Full Text] [Related]  

  • 14. Wave intensity analysis and the development of the reservoir-wave approach.
    Tyberg JV; Davies JE; Wang Z; Whitelaw WA; Flewitt JA; Shrive NG; Francis DP; Hughes AD; Parker KH; Wang JJ
    Med Biol Eng Comput; 2009 Feb; 47(2):221-32. PubMed ID: 19189147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of varying diastolic pressure fitting technique for the reservoir-wave model on wave intensity analysis.
    Pomella N; Rietzschel ER; Segers P; Khir AW
    Proc Inst Mech Eng H; 2020 Nov; 234(11):1300-1311. PubMed ID: 32996433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forward and backward waves in the arterial system: impedance or wave intensity analysis?
    Hughes AD; Parker KH
    Med Biol Eng Comput; 2009 Feb; 47(2):207-10. PubMed ID: 19198913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure reservoir-wave separation applied to the coronary arterial data.
    Aguado-Sierra J; Hadjilizou N; Davies JE; Francis D; Mayet J; Parker KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2693-6. PubMed ID: 18002550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wave intensity in the ascending aorta: effects of arterial occlusion.
    Khir AW; Parker KH
    J Biomech; 2005 Apr; 38(4):647-55. PubMed ID: 15713284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wave intensity analysis in air-filled flexible vessels.
    Clavica F; Parker KH; Khir AW
    J Biomech; 2015 Feb; 48(4):687-694. PubMed ID: 25595424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The case for the reservoir-wave approach.
    Tyberg JV; Bouwmeester JC; Parker KH; Shrive NG; Wang JJ
    Int J Cardiol; 2014 Mar; 172(2):299-306. PubMed ID: 24485224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.