BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19205803)

  • 21. Electric-acoustic interactions in the hearing cochlea: single fiber recordings.
    Tillein J; Hartmann R; Kral A
    Hear Res; 2015 Apr; 322():112-26. PubMed ID: 25285621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sound Coding in the Auditory Nerve: From Single Fiber Activity to Cochlear Mass Potentials in Gerbils.
    Huet A; Batrel C; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    Neuroscience; 2019 May; 407():83-92. PubMed ID: 30342201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spike timing in auditory-nerve fibers during spontaneous activity and phase locking.
    Heil P; Peterson AJ
    Synapse; 2017 Jan; 71(1):5-36. PubMed ID: 27466786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Examining the auditory nerve fiber response to high rate cochlear implant stimulation: chronic sensorineural hearing loss and facilitation.
    Heffer LF; Sly DJ; Fallon JB; White MW; Shepherd RK; O'Leary SJ
    J Neurophysiol; 2010 Dec; 104(6):3124-35. PubMed ID: 20926607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Computational Model of a Single Auditory Nerve Fiber for Electric-Acoustic Stimulation.
    Kipping D; Nogueira W
    J Assoc Res Otolaryngol; 2022 Dec; 23(6):835-858. PubMed ID: 36333573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of the rates of pseudo-spontaneous spikes generated by electric stimuli on information transmission in an auditory nerve fiber model.
    Kumsa P; Mino H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5246-9. PubMed ID: 24110919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Psychoacoustic and electrophysiological electric-acoustic interaction effects in cochlear implant users with ipsilateral residual hearing.
    Imsiecke M; Büchner A; Lenarz T; Nogueira W
    Hear Res; 2020 Feb; 386():107873. PubMed ID: 31884220
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Auditory nerve fiber responses to electric stimulation: modulated and unmodulated pulse trains.
    Litvak L; Delgutte B; Eddington D
    J Acoust Soc Am; 2001 Jul; 110(1):368-79. PubMed ID: 11508961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantifying envelope and fine-structure coding in auditory nerve responses to chimaeric speech.
    Heinz MG; Swaminathan J
    J Assoc Res Otolaryngol; 2009 Sep; 10(3):407-23. PubMed ID: 19365691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved temporal coding of sinusoids in electric stimulation of the auditory nerve using desynchronizing pulse trains.
    Litvak LM; Delgutte B; Eddington DK
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2079-98. PubMed ID: 14587607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. I. Intensity dependence of firing rate and response latency.
    Raggio MW; Schreiner CE
    J Neurophysiol; 1994 Nov; 72(5):2334-59. PubMed ID: 7884463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations.
    Wu JS; Young ED; Glowatzki E
    J Neurosci; 2016 Oct; 36(41):10584-10597. PubMed ID: 27733610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The dependence of auditory nerve rate adaptation on electric stimulus parameters, electrode position, and fiber diameter: a computer model study.
    Woo J; Miller CA; Abbas PJ
    J Assoc Res Otolaryngol; 2010 Jun; 11(2):283-96. PubMed ID: 20033248
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrical excitation of the acoustically sensitive auditory nerve: single-fiber responses to electric pulse trains.
    Miller CA; Abbas PJ; Robinson BK; Nourski KV; Zhang F; Jeng FC
    J Assoc Res Otolaryngol; 2006 Sep; 7(3):195-210. PubMed ID: 16708257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of auditory single fiber responses during acoustic and electric stimulation of the intact cat cochlea.
    Hartmann R; Topp G; Klinke R
    Arch Otorhinolaryngol; 1982; 234(2):187-8. PubMed ID: 7092705
    [No Abstract]   [Full Text] [Related]  

  • 36. Deafness alters auditory nerve fibre responses to cochlear implant stimulation.
    Sly DJ; Heffer LF; White MW; Shepherd RK; Birch MG; Minter RL; Nelson NE; Wise AK; O'Leary SJ
    Eur J Neurosci; 2007 Jul; 26(2):510-22. PubMed ID: 17650121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contribution of auditory nerve fibers to compound action potential of the auditory nerve.
    Bourien J; Tang Y; Batrel C; Huet A; Lenoir M; Ladrech S; Desmadryl G; Nouvian R; Puel JL; Wang J
    J Neurophysiol; 2014 Sep; 112(5):1025-39. PubMed ID: 24848461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An introduction to the biophysics of the electrically evoked compound action potential.
    Rubinstein JT
    Int J Audiol; 2004 Dec; 43 Suppl 1():S3-9. PubMed ID: 15732375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An empirically based model of the electrically evoked compound action potential.
    Miller CA; Abbas PJ; Rubinstein JT
    Hear Res; 1999 Sep; 135(1-2):1-18. PubMed ID: 10491949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acoustically derived auditory nerve action potential evoked by electrical stimulation: an estimation of the waveform of single unit contribution.
    de Sauvage RC; Cazals Y; Erre JP; Aran JM
    J Acoust Soc Am; 1983 Feb; 73(2):616-27. PubMed ID: 6841801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.