These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19206217)

  • 1. Wurtzite-twinning-induced growth of three-dimensional II-VI ternary alloyed nanoarchitectures and their tunable band gap energy properties.
    Yin LW; Lee ST
    Nano Lett; 2009 Mar; 9(3):957-63. PubMed ID: 19206217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sb Incorporation in Wurtzite and Zinc Blende InAs
    Dahl M; Namazi L; Zamani RR; Dick KA
    Small; 2018 Mar; 14(11):e1703785. PubMed ID: 29377459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One solvent, one pot and free capping ligands: Synthesis of alloyed multipod-branched Cd(x)Zn(1-)(x)S nanocrystals.
    He X; Gao L
    J Colloid Interface Sci; 2010 Sep; 349(1):159-65. PubMed ID: 20570272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composition-tunable alloyed semiconductor nanocrystals.
    Regulacio MD; Han MY
    Acc Chem Res; 2010 May; 43(5):621-30. PubMed ID: 20214405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Origin of the Band Gap Anomaly of Quaternary Alloy Cd(x)Zn(1-x)S(y)Se(1-y) Nanowires, Nanobelts, and Nanosheets in the Visible Spectrum.
    Kwon SJ; Jeong HM; Jung K; Ko DH; Ko H; Han IK; Kim GT; Park JG
    ACS Nano; 2015 May; 9(5):5486-99. PubMed ID: 25897466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in L-cysteine-capped alloyed quaternary CdZnTeS quantum dots.
    Adegoke O; Park EY
    Sci Rep; 2016 Jun; 6():27288. PubMed ID: 27250067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alloyed (ZnSe)(x)(CuInSe2)(1-x) and CuInSe(x)S(2-x) nanocrystals with a monophase zinc blende structure over the entire composition range.
    Li S; Zhao Z; Liu Q; Huang L; Wang G; Pan D; Zhang H; He X
    Inorg Chem; 2011 Dec; 50(23):11958-64. PubMed ID: 21942215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band-gap engineering of semiconductor nanowires through composition modulation.
    Liang Y; Zhai L; Zhao X; Xu D
    J Phys Chem B; 2005 Apr; 109(15):7120-3. PubMed ID: 16851811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure transfer in core/shell nanowires.
    Algra RE; Hocevar M; Verheijen MA; Zardo I; Immink GG; van Enckevort WJ; Abstreiter G; Kouwenhoven LP; Vlieg E; Bakkers EP
    Nano Lett; 2011 Apr; 11(4):1690-4. PubMed ID: 21417242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composition-Tunable Optical Properties of Zn
    Mansur AAP; Mansur HS; Caires AJ; Mansur RL; Oliveira LC
    Nanoscale Res Lett; 2017 Dec; 12(1):443. PubMed ID: 28683540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gradient band gap engineered alloyed quaternary/ternary CdZnSeS/ZnSeS quantum dots: an ultrasensitive fluorescence reporter in a conjugated molecular beacon system for the biosensing of influenza virus RNA.
    Adegoke O; Seo MW; Kato T; Kawahito S; Park EY
    J Mater Chem B; 2016 Feb; 4(8):1489-1498. PubMed ID: 32263115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triple-twin domains in Mg doped GaN wurtzite nanowires: structural and electronic properties of this zinc-blende-like stacking.
    Arbiol J; Estradé S; Prades JD; Cirera A; Furtmayr F; Stark C; Laufer A; Stutzmann M; Eickhoff M; Gass MH; Bleloch AL; Peiró F; Morante JR
    Nanotechnology; 2009 Apr; 20(14):145704. PubMed ID: 19420534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zn₃P₂-Zn₃As₂ solid solution nanowires.
    Im HS; Park K; Jang DM; Jung CS; Park J; Yoo SJ; Kim JG
    Nano Lett; 2015 Feb; 15(2):990-7. PubMed ID: 25602167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring the Band Gap in the ZnS/ZnSe System: Solid Solutions by a Mechanically Induced Self-Sustaining Reaction.
    Avilés MA; Córdoba JM; Sayagués MJ; Gotor FJ
    Inorg Chem; 2019 Feb; 58(4):2565-2575. PubMed ID: 30694058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-dimensional nanostructures of II-VI ternary alloys: synthesis, optical properties, and applications.
    Lu J; Liu H; Zhang X; Sow CH
    Nanoscale; 2018 Sep; 10(37):17456-17476. PubMed ID: 30211428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple solution-phase approach to synthesize high quality ternary AgInSe2 and band gap tunable quaternary AgIn(S1-xSex)2 nanocrystals.
    Bai T; Li C; Li F; Zhao L; Wang Z; Huang H; Chen C; Han Y; Shi Z; Feng S
    Nanoscale; 2014 Jun; 6(12):6782-9. PubMed ID: 24827158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linearly arranged polytypic CZTSSe nanocrystals.
    Fan FJ; Wu L; Gong M; Chen SY; Liu GY; Yao HB; Liang HW; Wang YX; Yu SH
    Sci Rep; 2012; 2():952. PubMed ID: 23233871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organometallic synthesis, structure determination, shape evolution, and formation mechanism of hexapod-like ternary PbSe(x)S(1-x) nanostructures with tunable compositions.
    Shao G; Chen G; Zuo J; Gong M; Yang Q
    Langmuir; 2014 Jul; 30(26):7811-22. PubMed ID: 24963993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and characterization of ternary AlGaN alloy nanocones across the entire composition range.
    He C; Wu Q; Wang X; Zhang Y; Yang L; Liu N; Zhao Y; Lu Y; Hu Z
    ACS Nano; 2011 Feb; 5(2):1291-6. PubMed ID: 21284401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thin-film-based nanoarchitectures for soft matter: controlled assemblies into two-dimensional worlds.
    Sakakibara K; Hill JP; Ariga K
    Small; 2011 May; 7(10):1288-308. PubMed ID: 21506267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.