These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 19206260)

  • 1. Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation.
    Zhang Q; Xie J; Yang J; Lee JY
    ACS Nano; 2009 Jan; 3(1):139-48. PubMed ID: 19206260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled synthesis and self-assembly of highly monodisperse Ag and Ag(2)S nanocrystals.
    Li P; Peng Q; Li Y
    Chemistry; 2011 Jan; 17(3):941-6. PubMed ID: 21226111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise seed-mediated growth and size-controlled synthesis of palladium nanoparticles using a green chemistry approach.
    Liu J; He F; Gunn TM; Zhao D; Roberts CB
    Langmuir; 2009 Jun; 25(12):7116-28. PubMed ID: 19309120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-temperature metallic alloying of copper and silver nanoparticles with gold nanoparticles through digestive ripening.
    Smetana AB; Klabunde KJ; Sorensen CM; Ponce AA; Mwale B
    J Phys Chem B; 2006 Feb; 110(5):2155-8. PubMed ID: 16471798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation.
    Smetana AB; Klabunde KJ; Sorensen CM
    J Colloid Interface Sci; 2005 Apr; 284(2):521-6. PubMed ID: 15780291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid synthesis of highly monodisperse Au(x)Ag(1-x) alloy nanoparticles via a half-seeding approach.
    Chng TT; Polavarapu L; Xu QH; Ji W; Zeng HC
    Langmuir; 2011 May; 27(9):5633-43. PubMed ID: 21462957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization and self-assembly into superlattices of iron oxide-gold core-shell nanoparticles synthesized via a high-temperature organometallic route.
    Chiang IC; Chen DH
    Nanotechnology; 2009 Jan; 20(1):015602. PubMed ID: 19417256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction of monodisperse palladium nanoparticles from dendrimer templates.
    Garcia-Martinez JC; Scott RW; Crooks RM
    J Am Chem Soc; 2003 Sep; 125(37):11190-1. PubMed ID: 16220928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly ordered superlattices from polydisperse Ag nanoparticles: a comparative study of fractionation and self-correction.
    Yang Y; Kimura K
    J Phys Chem B; 2006 Dec; 110(48):24442-9. PubMed ID: 17134199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract.
    Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(2):374-81. PubMed ID: 19324587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers.
    Liu FK; Huang PW; Chang YC; Ko FH; Chu TC
    Langmuir; 2005 Mar; 21(6):2519-25. PubMed ID: 15752048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver nanoparticles capped by oleylamine: formation, growth, and self-organization.
    Chen M; Feng YG; Wang X; Li TC; Zhang JY; Qian DJ
    Langmuir; 2007 May; 23(10):5296-304. PubMed ID: 17425348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and self-organization of soluble monodisperse palladium nanoclusters.
    Chen M; Falkner J; Guo WH; Zhang JY; Sayes C; Colvin VL
    J Colloid Interface Sci; 2005 Jul; 287(1):146-51. PubMed ID: 15914159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimetallic nanoparticles: a single step synthesis, stabilization, and characterization of Au-Ag, Au-Pd, and Au-Pt in sol-gel derived silicates.
    Devarajan S; Bera P; Sampath S
    J Colloid Interface Sci; 2005 Oct; 290(1):117-29. PubMed ID: 15939432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of Au-Ag alloy nanoparticles by thermal annealing.
    Yao RH; She JC; Xu NS; Deng SZ; Chen J
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3487-92. PubMed ID: 19051900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial deposition of Ag on Au seeds leading to AucoreAgshell in organic media.
    Prathap Chandran S; Ghatak J; Satyam PV; Sastry M
    J Colloid Interface Sci; 2007 Aug; 312(2):498-505. PubMed ID: 17434179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-dependent multiple twinning in nanocrystal superlattices.
    Rupich SM; Shevchenko EV; Bodnarchuk MI; Lee B; Talapin DV
    J Am Chem Soc; 2010 Jan; 132(1):289-96. PubMed ID: 19968283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructural characterization of gold nanoparticles synthesized by solution plasma processing.
    Cho SP; Bratescu MA; Saito N; Takai O
    Nanotechnology; 2011 Nov; 22(45):455701. PubMed ID: 21992774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective dissolution of the silver component in colloidal Au and Ag multilayers: a facile way to prepare nanoporous gold film materials.
    Lu Y; Wang Q; Sun J; Shen J
    Langmuir; 2005 May; 21(11):5179-84. PubMed ID: 15896068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.