These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19206441)

  • 41. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles.
    Nam HY; Kwon SM; Chung H; Lee SY; Kwon SH; Jeon H; Kim Y; Park JH; Kim J; Her S; Oh YK; Kwon IC; Kim K; Jeong SY
    J Control Release; 2009 May; 135(3):259-67. PubMed ID: 19331853
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biosensing by optical waveguide spectroscopy based on localized surface plasmon resonance of gold nanoparticles used as a probe or as a label.
    Kajiura M; Nakanishi T; Iida H; Takada H; Osaka T
    J Colloid Interface Sci; 2009 Jul; 335(1):140-5. PubMed ID: 19395015
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanoparticle enhanced imaging.
    Harisinghani MG
    Cancer Biomark; 2009; 5(2):59. PubMed ID: 19414921
    [No Abstract]   [Full Text] [Related]  

  • 45. Elaboration of radiopaque iodinated nanoparticles for in situ control of local drug delivery.
    Mawad D; Mouaziz H; Penciu A; Méhier H; Fenet B; Fessi H; Chevalier Y
    Biomaterials; 2009 Oct; 30(29):5667-74. PubMed ID: 19577801
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SERS microscopy: nanoparticle probes and biomedical applications.
    Schlücker S
    Chemphyschem; 2009 Jul; 10(9-10):1344-54. PubMed ID: 19565576
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Principle and applications of terahertz molecular imaging.
    Son JH
    Nanotechnology; 2013 May; 24(21):214001. PubMed ID: 23618745
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Decreasing photobleaching by silver nanoparticles on metal surfaces: application to muscle myofibrils.
    Muthu P; Gryczynski I; Gryczynski Z; Talent JM; Akopova I; Borejdo J
    J Biomed Opt; 2008; 13(1):014023. PubMed ID: 18315381
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanoparticles as computed tomography contrast agents: current status and future perspectives.
    Shilo M; Reuveni T; Motiei M; Popovtzer R
    Nanomedicine (Lond); 2012 Feb; 7(2):257-69. PubMed ID: 22339135
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SERS nanoparticles: a new optical detection modality for cancer diagnosis.
    Sha MY; Xu H; Penn SG; Cromer R
    Nanomedicine (Lond); 2007 Oct; 2(5):725-34. PubMed ID: 17976033
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Origin of broad polydispersion in functionalized dendrimers and its effects on cancer-cell binding affinity.
    Waddell JN; Mullen DG; Orr BG; Banaszak Holl MM; Sander LM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036108. PubMed ID: 21230140
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative imaging of protein secretions from single cells in real time.
    Raphael MP; Christodoulides JA; Delehanty JB; Long JP; Byers JM
    Biophys J; 2013 Aug; 105(3):602-8. PubMed ID: 23931308
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Delivery of optical contrast agents using Triton-X100, part 2: enhanced mucosal permeation for the detection of cancer biomarkers.
    van de Ven AL; Adler-Storthz K; Richards-Kortum R
    J Biomed Opt; 2009; 14(2):021013. PubMed ID: 19405726
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomedical nanotechnology for molecular imaging, profiling, and drug targeting.
    Kim G; O'regan R; Nie S
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2006():714-6. PubMed ID: 17282282
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoparticles for super-resolution microscopy: intracellular delivery and molecular targeting.
    Pramanik SK; Sreedharan S; Tiwari R; Dutta S; Kandoth N; Barman S; Aderinto SO; Chattopadhyay S; Das A; Thomas JA
    Chem Soc Rev; 2022 Dec; 51(24):9882-9916. PubMed ID: 36420611
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multifunctional imaging probe based on gadofulleride nanoplatform.
    Zheng JP; Liu QL; Zhen MM; Jiang F; Shu CY; Jin C; Yang Y; Alhadlaq HA; Wang CR
    Nanoscale; 2012 Jun; 4(12):3669-72. PubMed ID: 22617872
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Zeroing in on cancer.
    Harmon K
    Sci Am; 2012 May; 306(5):45. PubMed ID: 22550923
    [No Abstract]   [Full Text] [Related]  

  • 59. Hopping the Hurdle: Strategies to Enhance the Molecular Delivery to the Brain through the Blood-Brain Barrier.
    Cogill SA; Lee JH; Jeon MT; Kim DG; Chang Y
    Cells; 2024 May; 13(10):. PubMed ID: 38786013
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lipid nanovehicles overcome barriers to systemic RNA delivery: Lipid components, fabrication methods, and rational design.
    Yan J; Zhang H; Li G; Su J; Wei Y; Xu C
    Acta Pharm Sin B; 2024 Feb; 14(2):579-601. PubMed ID: 38322344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.