These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19206528)

  • 41. Micellar cobaltporphyrin nanorods in alcohols.
    Yuasa M; Oyaizu K; Yamaguchi A; Kuwakado M
    J Am Chem Soc; 2004 Sep; 126(36):11128-9. PubMed ID: 15355075
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanoscale forces and their uses in self-assembly.
    Bishop KJ; Wilmer CE; Soh S; Grzybowski BA
    Small; 2009 Jul; 5(14):1600-30. PubMed ID: 19517482
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanism of Nanorod Formation by Wormlike Micelle-Assisted Assembly of Nanospheres.
    Chhatre A; Duttagupta S; Thaokar R; Mehra A
    Langmuir; 2015 Sep; 31(38):10524-31. PubMed ID: 26348207
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Complex systems analysis of series of blackouts: cascading failure, critical points, and self-organization.
    Dobson I; Carreras BA; Lynch VE; Newman DE
    Chaos; 2007 Jun; 17(2):026103. PubMed ID: 17614690
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Understanding the structure of aqueous cesium chloride solutions by combining diffraction experiments, molecular dynamics simulations, and reverse Monte Carlo modeling.
    Mile V; Pusztai L; Dominguez H; Pizio O
    J Phys Chem B; 2009 Aug; 113(31):10760-9. PubMed ID: 19588949
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-assembly of rod-shaped particles in diblock-copolymer templates.
    Tang QY; Ma YQ
    J Phys Chem B; 2009 Jul; 113(30):10117-20. PubMed ID: 19719279
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Concerted Growth and Ordering of Cobalt Nanorod Arrays as Revealed by Tandem in Situ SAXS-XAS Studies.
    Cormary B; Li T; Liakakos N; Peres L; Fazzini PF; Blon T; Respaud M; Kropf AJ; Chaudret B; Miller JT; Mader EA; Soulantica K
    J Am Chem Soc; 2016 Jul; 138(27):8422-31. PubMed ID: 27300493
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular dynamics simulation of nanoconfinement induced organization of n-decane.
    Kalyanasundaram V; Spearot DE; Malshe AP
    Langmuir; 2009 Jul; 25(13):7553-60. PubMed ID: 19507848
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Size Tuned Synthesis of FeOOH Nanorods toward Self-Assembled Nanoarchitectonics.
    Karami-Darehnaranji M; Taghizadeh SM; Mirzaei E; Berenjian A; Ebrahiminezhad A
    Langmuir; 2021 Jan; 37(1):115-123. PubMed ID: 33346669
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Controlling the size, morphology, and aspect ratio of nanostructures using reverse micelles: a case study of copper oxalate monohydrate.
    Ranjan R; Vaidya S; Thaplyal P; Qamar M; Ahmed J; Ganguli AK
    Langmuir; 2009 Jun; 25(11):6469-75. PubMed ID: 19466793
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Size-Dependent Orientational Dynamics of Brownian Nanorods.
    Brouzet C; Mittal N; Söderberg LD; Lundell F
    ACS Macro Lett; 2018 Aug; 7(8):1022-1027. PubMed ID: 35650955
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1,2-propanediamine.
    Li Z; Lai X; Wang H; Mao D; Xing C; Wang D
    Nanotechnology; 2009 Jun; 20(24):245603. PubMed ID: 19471078
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of the colloidal state on the oriented attachment growth mechanism.
    Dalmaschio CJ; Ribeiro C; Leite ER
    Nanoscale; 2010 Nov; 2(11):2336-45. PubMed ID: 20835441
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method.
    Qiu J; Li X; He W; Park SJ; Kim HK; Hwang YH; Lee JH; Kim YD
    Nanotechnology; 2009 Apr; 20(15):155603. PubMed ID: 19420551
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Agglomeration Dynamics of 1D Materials: Gas-Phase Collision Rates of Nanotubes and Nanorods.
    Boies AM; Hoecker C; Bhalerao A; Kateris N; de La Verpilliere J; Graves B; Smail F
    Small; 2019 Jul; 15(27):e1900520. PubMed ID: 31120182
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular simulation of the diffusion mechanism of nanorods in cross-linked networks.
    Zhao BR; Li B; Shi X
    Nanoscale; 2021 Oct; 13(41):17404-17416. PubMed ID: 34647122
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-assembly of copper succinate nanoparticles to form anisotropic mesostructures.
    Ganguly A; Ahmad T; Ganguli AK
    Dalton Trans; 2009 May; (18):3536-41. PubMed ID: 19381416
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Statics and dynamics of colloid-polymer mixtures near their critical point of phase separation: A computer simulation study of a continuous Asakura-Oosawa model.
    Zausch J; Virnau P; Binder K; Horbach J; Vink RL
    J Chem Phys; 2009 Feb; 130(6):064906. PubMed ID: 19222297
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanism for stripe pattern formation on hydrophilic surfaces by using convective self-assembly.
    Watanabe S; Inukai K; Mizuta S; Miyahara MT
    Langmuir; 2009 Jul; 25(13):7287-95. PubMed ID: 19492788
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Local ordering of polymer-tethered nanospheres and nanorods and the stabilization of the double gyroid phase.
    Iacovella CR; Horsch MA; Glotzer SC
    J Chem Phys; 2008 Jul; 129(4):044902. PubMed ID: 18681673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.