BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19206548)

  • 21. Conformations of primary amphipathic carrier peptides in membrane mimicking environments.
    Chaloin L; Vidal P; Heitz A; Van Mau N; Méry J; Divita G; Heitz F
    Biochemistry; 1997 Sep; 36(37):11179-87. PubMed ID: 9287160
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis.
    Deshayes S; Heitz A; Morris MC; Charnet P; Divita G; Heitz F
    Biochemistry; 2004 Feb; 43(6):1449-57. PubMed ID: 14769021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of carrier peptides for the delivery of nucleic acid drugs in primary cells.
    Rennert R; Neundorf I; Jahnke HG; Suchowerskyj P; Dournaud P; Robitzki A; Beck-Sickinger AG
    ChemMedChem; 2008 Feb; 3(2):241-53. PubMed ID: 18205166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of cellular internalization pathways for CPP-mediated oligonucleotide delivery.
    Guterstam P; Andaloussi SE; Langel U
    Methods Mol Biol; 2011; 683():219-30. PubMed ID: 21053133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peptide binding to the HLA-DRB1 supertype: a proteochemometrics analysis.
    Dimitrov I; Garnev P; Flower DR; Doytchinova I
    Eur J Med Chem; 2010 Jan; 45(1):236-43. PubMed ID: 19896246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insight into the cellular uptake mechanism of a secondary amphipathic cell-penetrating peptide for siRNA delivery.
    Konate K; Crombez L; Deshayes S; Decaffmeyer M; Thomas A; Brasseur R; Aldrian G; Heitz F; Divita G
    Biochemistry; 2010 Apr; 49(16):3393-402. PubMed ID: 20302329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elastin-like polypeptides: biomedical applications of tunable biopolymers.
    MacEwan SR; Chilkoti A
    Biopolymers; 2010; 94(1):60-77. PubMed ID: 20091871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organelle-targeted delivery of biological macromolecules using the protein transduction domain: potential applications for Peptide aptamer delivery into the nucleus.
    Yoshikawa T; Sugita T; Mukai Y; Yamanada N; Nagano K; Nabeshi H; Yoshioka Y; Nakagawa S; Abe Y; Kamada H; Tsunoda S; Tsutsumi Y
    J Mol Biol; 2008 Jul; 380(5):777-82. PubMed ID: 18571668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Macrocyclic peptides self-assemble into robust vesicles with molecular recognition capabilities.
    Jeong WJ; Lim YB
    Bioconjug Chem; 2014 Nov; 25(11):1996-2003. PubMed ID: 25290503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chances and pitfalls of cell penetrating peptides for cellular drug delivery.
    Tréhin R; Merkle HP
    Eur J Pharm Biopharm; 2004 Sep; 58(2):209-23. PubMed ID: 15296950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular uptake of S413-PV peptide occurs upon conformational changes induced by peptide-membrane interactions.
    Mano M; Henriques A; Paiva A; Prieto M; Gavilanes F; Simões S; Pedroso de Lima MC
    Biochim Biophys Acta; 2006 Mar; 1758(3):336-46. PubMed ID: 16516138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions of amphipathic carrier peptides with membrane components in relation with their ability to deliver therapeutics.
    Deshayes S; Morris MC; Divita G; Heitz F
    J Pept Sci; 2006 Dec; 12(12):758-65. PubMed ID: 17131287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery.
    Angelova A; Angelov B; Mutafchieva R; Lesieur S; Couvreur P
    Acc Chem Res; 2011 Feb; 44(2):147-56. PubMed ID: 21189042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the use of amphipathic peptide-based protein carrier for in vitro cancer research.
    Lo SL; Wang S
    Biochem Biophys Res Commun; 2012 Mar; 419(2):170-4. PubMed ID: 22326265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptide/protein hybrid materials: enhanced control of structure and improved performance through conjugation of biological and synthetic polymers.
    Vandermeulen GW; Klok HA
    Macromol Biosci; 2004 Apr; 4(4):383-98. PubMed ID: 15468229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracellular trafficking and unpacking of siRNA/quantum dot-PEI complexes modified with and without cell penetrating peptide: confocal and flow cytometric FRET analysis.
    Lee H; Kim IK; Park TG
    Bioconjug Chem; 2010 Feb; 21(2):289-95. PubMed ID: 20078095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular biomimetics: GEPI-based biological routes to technology.
    Tamerler C; Khatayevich D; Gungormus M; Kacar T; Oren EE; Hnilova M; Sarikaya M
    Biopolymers; 2010; 94(1):78-94. PubMed ID: 20091881
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of a Pep-1 peptide-modified liposomal nanocarrier system for intracellular drug delivery: Conformational characterization and cellular uptake evaluation.
    ; ; . PubMed ID: 20738150
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.