BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 19206550)

  • 41. Gold nanoparticle effects in polymerase chain reaction: favoring of smaller products by polymerase adsorption.
    Vu BV; Litvinov D; Willson RC
    Anal Chem; 2008 Jul; 80(14):5462-7. PubMed ID: 18558773
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tuning the intramolecular charge transfer of alkynylpyrenes: effect on photophysical properties and its application in design of OFF-ON fluorescent thiol probes.
    Ji S; Yang J; Yang Q; Liu S; Chen M; Zhao J
    J Org Chem; 2009 Jul; 74(13):4855-65. PubMed ID: 19459695
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrochemical preparation and delivery of melanin-iron covered gold nanoparticles.
    Grumelli D; Vericat C; Benítez G; Ramallo-López JM; Giovanetti L; Requejo F; Moreno MS; Orive AG; Creus AH; Salvarezza RC
    Chemphyschem; 2009 Feb; 10(2):370-3. PubMed ID: 19072961
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Unusual fluorescence enhancement of a novel carbazolyldiacetylene bound to gold nanoparticles.
    Li C; Liu X; Yuan M; Li J; Guo Y; Xu J; Zhu M; Lv J; Liu H; Li Y
    Langmuir; 2007 Jun; 23(12):6754-60. PubMed ID: 17488044
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fluorescence imaging of the oxidative desorption of a BODIPY-alkyl-thiol monolayer coated Au bead.
    Musgrove A; Kell A; Bizzotto D
    Langmuir; 2008 Aug; 24(15):7881-8. PubMed ID: 18572885
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fluorescence enhancement of pyrene chromophores induced by alkyl groups through σ-π conjugation: systematic synthesis of primary, secondary, and tertiary alkylated pyrenes at the 1, 3, 6, and 8 positions and their photophysical properties.
    Niko Y; Kawauchi S; Otsu S; Tokumaru K; Konishi G
    J Org Chem; 2013 Apr; 78(7):3196-207. PubMed ID: 23425392
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photophysical and photochemical properties of a novel thiol terminated low symmetry zinc phthalocyanine complex and its gold nanoparticles conjugate.
    Mthethwa TP; Tuncel S; Durmuş M; Nyokong T
    Dalton Trans; 2013 Apr; 42(14):4922-30. PubMed ID: 23385542
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Facile functionalization of gold nanoparticles via microwave-assisted 1,3 dipolar cycloaddition.
    Sommer WJ; Weck M
    Langmuir; 2007 Nov; 23(24):11991-5. PubMed ID: 17944499
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural and functional glycosphingolipidomics by glycoblotting with an aminooxy-functionalized gold nanoparticle.
    Nagahori N; Abe M; Nishimura S
    Biochemistry; 2009 Jan; 48(3):583-94. PubMed ID: 19117481
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rationally designed ligands that inhibit the aggregation of large gold nanoparticles in solution.
    Zhang S; Leem G; Srisombat LO; Lee TR
    J Am Chem Soc; 2008 Jan; 130(1):113-20. PubMed ID: 18072768
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photoinduced electron transfer from phycoerythrin to colloidal metal semiconductor nanoparticles.
    Kathiravan A; Chandramohan M; Renganathan R; Sekar S
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Apr; 72(3):496-501. PubMed ID: 19083264
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Total structure determination of thiolate-protected Au38 nanoparticles.
    Qian H; Eckenhoff WT; Zhu Y; Pintauer T; Jin R
    J Am Chem Soc; 2010 Jun; 132(24):8280-1. PubMed ID: 20515047
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photosensitised seeding of thiolate-stabilised gold nanoparticles.
    Cuquerella MC; Pocoví-Martínez S; Pérez-Prieto J
    Chemphyschem; 2011 Jan; 12(1):136-9. PubMed ID: 21226193
    [No Abstract]   [Full Text] [Related]  

  • 54. Reagentless functionalization of gold nanoparticles via a 3 + 2 Huisgen cycloaddition.
    Limapichat W; Basu A
    J Colloid Interface Sci; 2008 Feb; 318(1):140-4. PubMed ID: 17936777
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2012 Oct; 6(10):9283-90. PubMed ID: 22973978
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties.
    Wang L; Shi X; Kariuki NN; Schadt M; Wang GR; Rendeng Q; Choi J; Luo J; Lu S; Zhong CJ
    J Am Chem Soc; 2007 Feb; 129(7):2161-70. PubMed ID: 17253690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Formation of gold nanoparticles using amine reducing agents.
    Newman JD; Blanchard GJ
    Langmuir; 2006 Jun; 22(13):5882-7. PubMed ID: 16768524
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tandem mass spectrometry of thiolate-protected Au nanoparticles Na(x)Au25(SC2H4Ph)(18-y)(S(C2H4O)5CH3)(y).
    Fields-Zinna CA; Sampson JS; Crowe MC; Tracy JB; Parker JF; deNey AM; Muddiman DC; Murray RW
    J Am Chem Soc; 2009 Sep; 131(38):13844-51. PubMed ID: 19736992
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity.
    Jennings TL; Singh MP; Strouse GF
    J Am Chem Soc; 2006 Apr; 128(16):5462-7. PubMed ID: 16620118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.