These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1099 related articles for article (PubMed ID: 19206640)
1. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. Abu Hatab NA; Oran JM; Sepaniak MJ ACS Nano; 2008 Feb; 2(2):377-85. PubMed ID: 19206640 [TBL] [Abstract][Full Text] [Related]
2. Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy. Wells SM; Retterer SD; Oran JM; Sepaniak MJ ACS Nano; 2009 Dec; 3(12):3845-53. PubMed ID: 19911835 [TBL] [Abstract][Full Text] [Related]
3. Nanofabrication of densely packed metal-polymer arrays for surface-enhanced Raman spectrometry. De Jesús MA; Giesfeldt KS; Oran JM; Abu-Hatab NA; Lavrik NV; Sepaniak MJ Appl Spectrosc; 2005 Dec; 59(12):1501-8. PubMed ID: 16390590 [TBL] [Abstract][Full Text] [Related]
4. The controlled pulsed laser deposition of Ag nanoparticle arrays for surface enhanced Raman scattering. D'Andrea C; Neri F; Ossi PM; Santo N; Trusso S Nanotechnology; 2009 Jun; 20(24):245606. PubMed ID: 19471080 [TBL] [Abstract][Full Text] [Related]
5. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects. Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428 [TBL] [Abstract][Full Text] [Related]
6. The preparation of silver nanoparticle decorated silica nanowires on fused quartz as reusable versatile nanostructured surface-enhanced Raman scattering substrates. Hwang JS; Chen KY; Hong SJ; Chen SW; Syu WS; Kuo CW; Syu WY; Lin TY; Chiang HP; Chattopadhyay S; Chen KH; Chen LC Nanotechnology; 2010 Jan; 21(2):025502. PubMed ID: 19955621 [TBL] [Abstract][Full Text] [Related]
7. Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Jun BH; Noh MS; Kim J; Kim G; Kang H; Kim MS; Seo YT; Baek J; Kim JH; Park J; Kim S; Kim YK; Hyeon T; Cho MH; Jeong DH; Lee YS Small; 2010 Jan; 6(1):119-25. PubMed ID: 19904763 [TBL] [Abstract][Full Text] [Related]
8. Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. He D; Hu B; Yao QF; Wang K; Yu SH ACS Nano; 2009 Dec; 3(12):3993-4002. PubMed ID: 19928883 [TBL] [Abstract][Full Text] [Related]
9. A SERS-active nanocrystalline pd substrate and its nanopatterning leading to biochip fabrication. Bhuvana T; Kulkarni GU Small; 2008 May; 4(5):670-6. PubMed ID: 18491365 [TBL] [Abstract][Full Text] [Related]
10. Surface-enhanced Raman scattering from ordered Ag nanocluster arrays. Schmidt JP; Cross SE; Buratto SK J Chem Phys; 2004 Dec; 121(21):10657-9. PubMed ID: 15549949 [TBL] [Abstract][Full Text] [Related]
11. Quantitative enhanced Raman scattering of labeled DNA from gold and silver nanoparticles. Stokes RJ; Macaskill A; Lundahl PJ; Smith WE; Faulds K; Graham D Small; 2007 Sep; 3(9):1593-601. PubMed ID: 17647254 [TBL] [Abstract][Full Text] [Related]
12. A SERRS-active bead/microelectromagnet system for small-scale sensitive molecular identification and quantitation. Quinn EJ; Hernandez-Santana A; Hutson DM; Pegrum CM; Graham D; Smith WE Small; 2007 Aug; 3(8):1394-7. PubMed ID: 17492746 [No Abstract] [Full Text] [Related]
13. Dual function surface-enhanced Raman active extractor for the detection of environmental contaminants. Bhandari D; Walworth MJ; Sepaniak MJ Appl Spectrosc; 2009 May; 63(5):571-8. PubMed ID: 19470216 [TBL] [Abstract][Full Text] [Related]
14. Extended domains of organized nanorings of silver grains as surface-enhanced Raman scattering sensors for molecular detection. Bechelany M; Brodard P; Philippe L; Michler J Nanotechnology; 2009 Nov; 20(45):455302. PubMed ID: 19834249 [TBL] [Abstract][Full Text] [Related]
15. Bond-detach lithography: a method for micro/nanolithography by precision PDMS patterning. Thangawng AL; Swartz MA; Glucksberg MR; Ruoff RS Small; 2007 Jan; 3(1):132-8. PubMed ID: 17294484 [TBL] [Abstract][Full Text] [Related]
16. Analytical optimization of nanocomposite surface-enhanced Raman spectroscopy/scattering detection in microfluidic separation devices. Connatser RM; Cochran M; Harrison RJ; Sepaniak MJ Electrophoresis; 2008 Apr; 29(7):1441-50. PubMed ID: 18386301 [TBL] [Abstract][Full Text] [Related]
17. Tuning the intensity of metal-enhanced fluorescence by engineering silver nanoparticle arrays. Yang B; Lu N; Qi D; Ma R; Wu Q; Hao J; Liu X; Mu Y; Reboud V; Kehagias N; Torres CM; Boey FY; Chen X; Chi L Small; 2010 May; 6(9):1038-43. PubMed ID: 20394069 [TBL] [Abstract][Full Text] [Related]
19. Influence of the number of nanoparticles on the enhancement properties of surface-enhanced Raman scattering active area: sensitivity versus repeatability. Margueritat J; Gehan H; Grand J; Lévi G; Aubard J; Félidj N; Bouhelier A; Colas-Des-Francs G; Markey L; Marco De Lucas C; Dereux A; Finot E ACS Nano; 2011 Mar; 5(3):1630-8. PubMed ID: 21366249 [TBL] [Abstract][Full Text] [Related]