These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19206681)

  • 41. Interface segregating fluoralkyl-modified polymers for high-fidelity block copolymer nanoimprint lithography.
    Voet VS; Pick TE; Park SM; Moritz M; Hammack AT; Urban JJ; Ogletree DF; Olynick DL; Helms BA
    J Am Chem Soc; 2011 Mar; 133(9):2812-5. PubMed ID: 21322559
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Large area, facile oxide nanofabrication via step-and-flash imprint lithography of metal-organic hybrid resins.
    Dinachali SS; Dumond J; Saifullah MS; Ansah-Antwi KK; Ganesan R; Thian ES; He C
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13113-23. PubMed ID: 24281700
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Roll in and roll out: a path to high-throughput nanoimprint lithography.
    Stuart C; Chen Y
    ACS Nano; 2009 Aug; 3(8):2062-4. PubMed ID: 19702318
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication of robust micro-patterned polymeric films via static breath-figure process and vulcanization.
    Li L; Zhong Y; Gong J; Li J; Huang J; Ma Z
    J Colloid Interface Sci; 2011 Feb; 354(2):758-64. PubMed ID: 21168143
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fluorinated ethylene-propylene: a complementary alternative to PDMS for nanoimprint stamps.
    Greer AI; Vasiev I; Della-Rosa B; Gadegaard N
    Nanotechnology; 2016 Apr; 27(15):155301. PubMed ID: 26938810
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A chemically amplified fullerene-derivative molecular electron-beam resist.
    Gibbons F; Zaid HM; Manickam M; Preece JA; Palmer RE; Robinson AP
    Small; 2007 Dec; 3(12):2076-80. PubMed ID: 18008296
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-resolution soft lithography of thin film resists enabling nanoscopic pattern transfer.
    Moran IW; Cheng DF; Jhaveri SB; Carter KR
    Soft Matter; 2007 Dec; 4(1):168-176. PubMed ID: 32907097
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diazoketo-functionalized POSS resists for high performance replica molds of ultraviolet-nanoimprint lithography.
    Shin S; Woo SA; Kim JB
    Nanotechnology; 2016 Nov; 27(47):475301. PubMed ID: 27779112
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Harnessing entropic and enthalpic contributions to create a negative tone chemically amplified molecular resist for high-resolution lithography.
    Kulshreshtha PK; Maruyama K; Kiani S; Blackwell J; Olynick DL; Ashby PD
    Nanotechnology; 2014 Aug; 25(31):315301. PubMed ID: 25026410
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conducting polymer networks cross-linked by "isolated" functional dyes: design, synthesis, and electrochemical polymerization of doubly strapped light-harvesting porphyrin/oligothiophene monomers.
    Sugiyasu K; Takeuchi M
    Chemistry; 2009 Jun; 15(26):6350-62. PubMed ID: 19526470
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cross-linked polymer replica of a nanoimprint mold at 30 nm half-pitch.
    Ge H; Wu W; Li Z; Jung GY; Olynick D; Chen Y; Liddle JA; Wang SY; Williams RS
    Nano Lett; 2005 Jan; 5(1):179-82. PubMed ID: 15792435
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biofunctional coatings via targeted covalent cross-linking of associating triblock proteins.
    Fischer SE; Mi L; Mao HQ; Harden JL
    Biomacromolecules; 2009 Sep; 10(9):2408-17. PubMed ID: 19655714
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chemically crosslinkable thermosensitive polyphosphazene gels as injectable materials for biomedical applications.
    Potta T; Chun C; Song SC
    Biomaterials; 2009 Oct; 30(31):6178-92. PubMed ID: 19709738
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrical nano-imprint lithography.
    Ressier L; Palleau E; Behar S
    Nanotechnology; 2012 Jun; 23(25):255302. PubMed ID: 22652623
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel polymeric nanocomposites and porous materials prepared using organogels.
    Lai WC; Tseng SC
    Nanotechnology; 2009 Nov; 20(47):475606. PubMed ID: 19875871
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release.
    Wischke C; Neffe AT; Steuer S; Lendlein A
    J Control Release; 2009 Sep; 138(3):243-50. PubMed ID: 19470395
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D visualization of mold filling stages in thermal nanoimprint by white light interferometry and atomic force microscopy.
    Schift H; Kim G; Lee J; Gobrecht J
    Nanotechnology; 2009 Sep; 20(35):355301. PubMed ID: 19671962
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-resolution functional epoxysilsesquioxane-based patterning layers for large-area nanoimprinting.
    Pina-Hernandez C; Guo LJ; Fu PF
    ACS Nano; 2010 Aug; 4(8):4776-84. PubMed ID: 20731453
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermal imprinting of nano-patterns using thiol-based self-assembled monolayer-treated nickel template.
    Byeon KJ; Hwang SY; Yang KY; Lee H
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4103-7. PubMed ID: 19916415
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Selection of di(meth)acrylate monomers for low pollution of fluorinated mold surfaces in ultraviolet nanoimprint lithography.
    Nakagawa M; Kobayashi K; Hattori AN; Ito S; Hiroshiba N; Kubo S; Tanaka H
    Langmuir; 2015 Apr; 31(14):4188-95. PubMed ID: 25793911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.