These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 19206690)

  • 21. Verification of chaotic behavior in an experimental loudspeaker.
    Reiss JD; Djurek I; Petosic A; Djurek D
    J Acoust Soc Am; 2008 Oct; 124(4):2031-41. PubMed ID: 19062843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impedance of pistons on a two-layer medium in a planar infinite rigid baffle.
    Hassan SE
    J Acoust Soc Am; 2007 Jul; 122(1):237-46. PubMed ID: 17614483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reflection and transmission coefficients for guided waves reflected by defects in viscoelastic material plates.
    Hosten B; Moreau L; Castaings M
    J Acoust Soc Am; 2007 Jun; 121(6):3409-17. PubMed ID: 17552692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of locally resonant modes on underwater sound absorption in viscoelastic materials.
    Wen J; Zhao H; Lv L; Yuan B; Wang G; Wen X
    J Acoust Soc Am; 2011 Sep; 130(3):1201-8. PubMed ID: 21895062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the variations of acoustic absorption peak with particle velocity in micro-perforated panels at high level of excitation.
    Tayong R; Dupont T; Leclaire P
    J Acoust Soc Am; 2010 May; 127(5):2875-82. PubMed ID: 21117738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of spherical loudspeaker arrays for local active control of sound.
    Peleg T; Rafaely B
    J Acoust Soc Am; 2011 Oct; 130(4):1926-35. PubMed ID: 21973347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active acoustical impedance using distributed electrodynamical transducers.
    Collet M; David P; Berthillier M
    J Acoust Soc Am; 2009 Feb; 125(2):882-94. PubMed ID: 19206865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic methods for measuring the porosities of porous materials incorporating dead-end pores.
    Dupont T; Leclaire P; Panneton R
    J Acoust Soc Am; 2013 Apr; 133(4):2136-45. PubMed ID: 23556583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mode matching method for modeling dissipative silencers lined with poroelastic materials and containing mean flow.
    Nennig B; Perrey-Debain E; Ben Tahar M
    J Acoust Soc Am; 2010 Dec; 128(6):3308-20. PubMed ID: 21218865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sound propagation above a porous road surface with extended reaction by boundary element method.
    Anfosso-Lédée F; Dangla P; Bérengier M
    J Acoust Soc Am; 2007 Aug; 122(2):731-6. PubMed ID: 17672623
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vibroacoustic behavior of clamp mounted double-panel partition with enclosure air cavity.
    Xin FX; Lu TJ; Chen CQ
    J Acoust Soc Am; 2008 Dec; 124(6):3604-12. PubMed ID: 19206789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Viscoelastic properties of three vocal-fold injectable biomaterials at low audio frequencies.
    Klemuk SA; Titze IR
    Laryngoscope; 2004 Sep; 114(9):1597-603. PubMed ID: 15475789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Total absorption peak by use of a rigid frame porous layer backed by a rigid multi-irregularities grating.
    Groby JP; Lauriks W; Vigran TE
    J Acoust Soc Am; 2010 May; 127(5):2865-74. PubMed ID: 21117737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poro-viscoelastic behavior of gelatin hydrogels under compression-implications for bioelasticity imaging.
    Kalyanam S; Yapp RD; Insana MF
    J Biomech Eng; 2009 Aug; 131(8):081005. PubMed ID: 19604017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of three measurement techniques for the normal absorption coefficient of sound absorbing materials in the free field.
    Hirosawa K; Takashima K; Nakagawa H; Kon M; Yamamoto A; Lauriks W
    J Acoust Soc Am; 2009 Dec; 126(6):3020-7. PubMed ID: 20000915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams.
    Chevillotte F; Perrot C; Panneton R
    J Acoust Soc Am; 2010 Oct; 128(4):1766-76. PubMed ID: 20968350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstruction of material properties profiles in one-dimensional macroscopically inhomogeneous rigid frame porous media in the frequency domain.
    De Ryck L; Lauriks W; Leclaire P; Groby JP; Wirgin A; Depollier C
    J Acoust Soc Am; 2008 Sep; 124(3):1591-606. PubMed ID: 19045651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel recycling of nonmetal particles from waste printed wiring boards to produce porous composite for sound absorbing application.
    Sun Z; Shen Z; Zhang X; Ma S
    Environ Technol; 2014; 35(9-12):1269-76. PubMed ID: 24701924
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electroacoustic analysis of an electret loudspeaker using combined finite-element and lumped-parameter models.
    Bai MR; Chen RL; Wang CJ
    J Acoust Soc Am; 2009 Jun; 125(6):3632-40. PubMed ID: 19507945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vibroacoustic properties of thin micro-perforated panel absorbers.
    Bravo T; Maury C; Pinhède C
    J Acoust Soc Am; 2012 Aug; 132(2):789-98. PubMed ID: 22894201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.