These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19206798)

  • 41. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans.
    Sun XM; Shaver MD
    Ear Hear; 2009 Apr; 30(2):191-202. PubMed ID: 19194291
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Energy reflectance and tympanometry in normal and otosclerotic ears.
    Shahnaz N; Bork K; Polka L; Longridge N; Bell D; Westerberg BD
    Ear Hear; 2009 Apr; 30(2):219-33. PubMed ID: 19194289
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wideband reflectance in newborns: normative regions and relationship to hearing-screening results.
    Hunter LL; Feeney MP; Lapsley Miller JA; Jeng PS; Bohning S
    Ear Hear; 2010 Oct; 31(5):599-610. PubMed ID: 20520553
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identifying Otosclerosis with Aural Acoustical Tests of Absorbance, Group Delay, Acoustic Reflex Threshold, and Otoacoustic Emissions.
    Keefe DH; Archer KL; Schmid KK; Fitzpatrick DF; Feeney MP; Hunter LL
    J Am Acad Audiol; 2017 Oct; 28(9):838-860. PubMed ID: 28972472
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tympanometric changes at 226 Hz and 678 Hz across 10 trials and for two directions of ear canal pressure change.
    Wilson RH; Shanks JE; Kaplan SK
    J Speech Hear Res; 1984 Jun; 27(2):257-66. PubMed ID: 6738038
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Factors affecting sound energy absorbance in acute otitis media model of chinchilla.
    Guan X; Seale TW; Gan RZ
    Hear Res; 2017 Jul; 350():22-31. PubMed ID: 28426992
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sources of variability in reflectance measurements on normal cadaver ears.
    Voss SE; Horton NJ; Woodbury RR; Sheffield KN
    Ear Hear; 2008 Aug; 29(4):651-65. PubMed ID: 18600136
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sources of variability in wideband energy reflectance measurements in adults.
    Feeney MP; Stover B; Keefe DH; Garinis AC; Day JE; Seixas N
    J Am Acad Audiol; 2014 May; 25(5):449-61. PubMed ID: 25257719
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multifrequency tympanometry in normal ears.
    Margolis RH; Van Camp KJ; Wilson RH; Creten WL
    Audiology; 1985; 24(1):44-53. PubMed ID: 3977783
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Standard and multifrequency tympanometric norms for Caucasian and Chinese young adults.
    Shahnaz N; Davies D
    Ear Hear; 2006 Feb; 27(1):75-90. PubMed ID: 16446566
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The sensitivity and specificity of wideband absorbance measure in identifying pathologic middle ears in adults living with HIV.
    Sebothoma B; Khoza-Shangase K; Mol D; Masege D
    S Afr J Commun Disord; 2021 Sep; 68(1):e1-e7. PubMed ID: 34636595
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wideband energy reflectance measurements: effects of negative middle ear pressure and application of a pressure compensation procedure.
    Shaver MD; Sun XM
    J Acoust Soc Am; 2013 Jul; 134(1):332-41. PubMed ID: 23862811
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Normative Wideband Acoustic Immittance Measurements in Caucasian and Aboriginal Children.
    Aithal V; Aithal S; Kei J; Manuel A
    Am J Audiol; 2019 Mar; 28(1):48-61. PubMed ID: 30938562
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tympanometric measures in ears with negative middle ear pressure, and tests of some common assumptions.
    Sun XM; Shaver MD; Harader J
    Int J Audiol; 2013 May; 52(5):333-41. PubMed ID: 23343243
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An evaluation of tympanometric estimates of ear canal volume.
    Shanks JE; Lilly DJ
    J Speech Hear Res; 1981 Dec; 24(4):557-66. PubMed ID: 7329051
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diagnosing Middle Ear Pathology in 6- to 9-Month-Old Infants Using Wideband Absorbance: A Risk Prediction Model.
    Myers J; Kei J; Aithal S; Aithal V; Driscoll C; Khan A; Manuel A; Joseph A; Malicka AN
    J Speech Lang Hear Res; 2018 Sep; 61(9):2386-2404. PubMed ID: 30208481
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [The study of wideband acoustic immittance normative data of young people].
    Fu XX; Liu B; Lin M; Qi BE; Liu JX
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2017 Sep; 31(18):1402-1407. PubMed ID: 29797993
    [No Abstract]   [Full Text] [Related]  

  • 58. Air-leak effects on ear-canal acoustic absorbance.
    Groon KA; Rasetshwane DM; Kopun JG; Gorga MP; Neely ST
    Ear Hear; 2015 Jan; 36(1):155-63. PubMed ID: 25170779
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Standard and multifrequency tympanometry in normal and otosclerotic ears.
    Shahnaz N; Polka L
    Ear Hear; 1997 Aug; 18(4):326-41. PubMed ID: 9288478
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pressurized transient otoacoustic emissions measured using click and chirp stimuli.
    Keefe DH; Patrick Feeney M; Hunter LL; Fitzpatrick DF; Sanford CA
    J Acoust Soc Am; 2018 Jan; 143(1):399. PubMed ID: 29390789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.