These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 19206821)

  • 1. Recognition of spectrally degraded phonemes by younger, middle-aged, and older normal-hearing listeners.
    Schvartz KC; Chatterjee M; Gordon-Salant S
    J Acoust Soc Am; 2008 Dec; 124(6):3972-88. PubMed ID: 19206821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants.
    Friesen LM; Shannon RV; Baskent D; Wang X
    J Acoust Soc Am; 2001 Aug; 110(2):1150-63. PubMed ID: 11519582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Word recognition for temporally and spectrally distorted materials: the effects of age and hearing loss.
    Smith SL; Pichora-Fuller MK; Wilson RH; Macdonald EN
    Ear Hear; 2012; 33(3):349-66. PubMed ID: 22343546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing Simulated Channel Interaction Reveals Differences in Phoneme Identification Between Children and Adults With Normal Hearing.
    Jahn KN; DiNino M; Arenberg JG
    Ear Hear; 2019; 40(2):295-311. PubMed ID: 29927780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of training rate on recognition of spectrally shifted speech.
    Nogaki G; Fu QJ; Galvin JJ
    Ear Hear; 2007 Apr; 28(2):132-40. PubMed ID: 17496666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cooperating and conflicting cues on speech intonation recognition by cochlear implant users and normal hearing listeners.
    Peng SC; Lu N; Chatterjee M
    Audiol Neurootol; 2009; 14(5):327-37. PubMed ID: 19372651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gender identification in younger and older adults: use of spectral and temporal cues in noise-vocoded speech.
    Schvartz KC; Chatterjee M
    Ear Hear; 2012; 33(3):411-20. PubMed ID: 22237163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of acoustic cues for phonetic identification: effects of spectral degradation and electric hearing.
    Winn MB; Chatterjee M; Idsardi WJ
    J Acoust Soc Am; 2012 Feb; 131(2):1465-79. PubMed ID: 22352517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of accented English in quiet by younger normal-hearing listeners and older listeners with normal-hearing and hearing loss.
    Gordon-Salant S; Yeni-Komshian GH; Fitzgibbons PJ
    J Acoust Soc Am; 2010 Jul; 128(1):444-55. PubMed ID: 20649238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lexical tone identification and consonant recognition in acoustic simulations of cochlear implants.
    Lin YS; Lu HP; Hung SC; Chang CP
    Acta Otolaryngol; 2009 Jun; 129(6):630-7. PubMed ID: 19444660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between unsupervised learning and the degree of spectral mismatch on short-term perceptual adaptation to spectrally shifted speech.
    Li T; Galvin JJ; Fu QJ
    Ear Hear; 2009 Apr; 30(2):238-49. PubMed ID: 19194293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perception of vowels and prosody by cochlear implant recipients in noise.
    Van Zyl M; Hanekom JJ
    J Commun Disord; 2013; 46(5-6):449-64. PubMed ID: 24157128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sentence intelligibility during segmental interruption and masking by speech-modulated noise: Effects of age and hearing loss.
    Fogerty D; Ahlstrom JB; Bologna WJ; Dubno JR
    J Acoust Soc Am; 2015 Jun; 137(6):3487-501. PubMed ID: 26093436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual Variability in Recalibrating to Spectrally Shifted Speech: Implications for Cochlear Implants.
    Smith ML; Winn MB
    Ear Hear; 2021; 42(5):1412-1427. PubMed ID: 33795617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of interrupted sentences under conditions of spectral degradation.
    Chatterjee M; Peredo F; Nelson D; Başkent D
    J Acoust Soc Am; 2010 Feb; 127(2):EL37-41. PubMed ID: 20136176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing.
    Fu QJ; Shannon RV; Wang X
    J Acoust Soc Am; 1998 Dec; 104(6):3586-96. PubMed ID: 9857517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory training with spectrally shifted speech: implications for cochlear implant patient auditory rehabilitation.
    Fu QJ; Nogaki G; Galvin JJ
    J Assoc Res Otolaryngol; 2005 Jun; 6(2):180-9. PubMed ID: 15952053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting effects of hearing-instrument signal processing on consonant perception.
    Zaar J; Schmitt N; Derleth RP; DiNino M; Arenberg JG; Dau T
    J Acoust Soc Am; 2017 Nov; 142(5):3216. PubMed ID: 29195458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of vowel context on the recognition of initial and medial consonants by cochlear implant users.
    Donaldson GS; Kreft HA
    Ear Hear; 2006 Dec; 27(6):658-77. PubMed ID: 17086077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Age and Working Memory Capacity on Speech Recognition Performance in Noise Among Listeners With Normal Hearing.
    Gordon-Salant S; Cole SS
    Ear Hear; 2016; 37(5):593-602. PubMed ID: 27232071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.