These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 19207721)
21. Mechanisms underlying the impaired EDHF-type relaxation response in mesenteric arteries from Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Matsumoto T; Kobayashi T; Kamata K Eur J Pharmacol; 2006 May; 538(1-3):132-40. PubMed ID: 16678154 [TBL] [Abstract][Full Text] [Related]
22. Endothelium-dependent relaxation by substance P in human isolated omental arteries and veins: relative contribution of prostanoids, nitric oxide and hyperpolarization. Wallerstedt SM; Bodelsson M Br J Pharmacol; 1997 Jan; 120(1):25-30. PubMed ID: 9117094 [TBL] [Abstract][Full Text] [Related]
24. The endothelium-derived hyperpolarising factor (EDHF) in isolated bovine choroidal arteries. Delaey C; Boussery K; Breyne J; Vanheel B; Van de Voorde J Exp Eye Res; 2007 Jun; 84(6):1067-73. PubMed ID: 17418119 [TBL] [Abstract][Full Text] [Related]
25. Evidence against potassium as an endothelium-derived hyperpolarizing factor in rat mesenteric small arteries. Lacy PS; Pilkington G; Hanvesakul R; Fish HJ; Boyle JP; Thurston H Br J Pharmacol; 2000 Feb; 129(3):605-11. PubMed ID: 10711361 [TBL] [Abstract][Full Text] [Related]
26. Effects of insulin on the acetylcholine-induced hyperpolarization in the guinea pig mesenteric arterioles. Imaeda K; Okayama N; Okouchi M; Omi H; Kato T; Akao M; Imai S; Uranishi H; Takeuchi Y; Ohara H; Fukutomi T; Joh T; Itoh M J Diabetes Complications; 2004; 18(6):356-62. PubMed ID: 15531186 [TBL] [Abstract][Full Text] [Related]
27. Effects of angiotensin II receptor antagonist on impaired endothelium-dependent and endothelium-independent relaxations in type II diabetic rats. Oniki H; Fujii K; Kansui Y; Goto K; Iida M J Hypertens; 2006 Feb; 24(2):331-8. PubMed ID: 16508581 [TBL] [Abstract][Full Text] [Related]
28. Small- and intermediate-conductance calcium-activated K+ channels provide different facets of endothelium-dependent hyperpolarization in rat mesenteric artery. Crane GJ; Gallagher N; Dora KA; Garland CJ J Physiol; 2003 Nov; 553(Pt 1):183-9. PubMed ID: 14555724 [TBL] [Abstract][Full Text] [Related]
29. Alterations in EDHF-mediated hyperpolarization and relaxation in mesenteric arteries of female rats in long-term deficiency of oestrogen and during oestrus cycle. Liu MY; Hattori Y; Fukao M; Sato A; Sakuma I; Kanno M Br J Pharmacol; 2001 Mar; 132(5):1035-46. PubMed ID: 11226134 [TBL] [Abstract][Full Text] [Related]
30. Relationship between NaF- and thapsigargin-induced endothelium-dependent hyperpolarization in rat mesenteric artery. Fukao M; Hattori Y; Sato A; Liu MY; Watanabe H; Kim TQ; Kanno M Br J Pharmacol; 1999 Apr; 126(7):1567-74. PubMed ID: 10323588 [TBL] [Abstract][Full Text] [Related]
31. Reciprocal changes in endothelium-derived hyperpolarizing factor- and nitric oxide-system in the mesenteric artery of adult female rats following ovariectomy. Nawate S; Fukao M; Sakuma I; Soma T; Nagai K; Takikawa O; Miwa S; Kitabatake A Br J Pharmacol; 2005 Jan; 144(2):178-89. PubMed ID: 15655506 [TBL] [Abstract][Full Text] [Related]
32. Potassium does not mimic EDHF in rat mesenteric arteries. Doughty JM; Boyle JP; Langton PD Br J Pharmacol; 2000 Jul; 130(5):1174-82. PubMed ID: 10882404 [TBL] [Abstract][Full Text] [Related]
33. EDHF-mediated relaxation is impaired in fructose-fed rats. Katakam PV; Ujhelyi MR; Miller AW J Cardiovasc Pharmacol; 1999 Sep; 34(3):461-7. PubMed ID: 10471008 [TBL] [Abstract][Full Text] [Related]
34. Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries. Dora KA; Gallagher NT; McNeish A; Garland CJ Circ Res; 2008 May; 102(10):1247-55. PubMed ID: 18403729 [TBL] [Abstract][Full Text] [Related]
35. Decreased endothelium-dependent hyperpolarization to acetylcholine in smooth muscle of the mesenteric artery of spontaneously hypertensive rats. Fujii K; Tominaga M; Ohmori S; Kobayashi K; Koga T; Takata Y; Fujishima M Circ Res; 1992 Apr; 70(4):660-9. PubMed ID: 1551193 [TBL] [Abstract][Full Text] [Related]
36. Acetylcholine-induced K+ currents in smooth muscle cells of intact rat small arteries. Weidelt T; Boldt W; Markwardt F J Physiol; 1997 May; 500 ( Pt 3)(Pt 3):617-30. PubMed ID: 9161980 [TBL] [Abstract][Full Text] [Related]
37. Effect of K(+)-channel blockers on ACh-induced hyperpolarization and relaxation in mesenteric arteries. Chen G; Cheung DW Am J Physiol; 1997 May; 272(5 Pt 2):H2306-12. PubMed ID: 9176299 [TBL] [Abstract][Full Text] [Related]
38. NO and KATP channels underlie endotoxin-induced smooth muscle hyperpolarization in rat mesenteric resistance arteries. Wu CC; Chen SJ; Garland CJ Br J Pharmacol; 2004 Jun; 142(3):479-84. PubMed ID: 15148259 [TBL] [Abstract][Full Text] [Related]
39. Regulation of vascular tone by endothelium-derived hyperpolarizing factor. Cheung DW; Chen G; MacKay MJ; Burnette E Clin Exp Pharmacol Physiol; 1999 Feb; 26(2):172-5. PubMed ID: 10065342 [TBL] [Abstract][Full Text] [Related]
40. A role for nitroxyl (HNO) as an endothelium-derived relaxing and hyperpolarizing factor in resistance arteries. Andrews KL; Irvine JC; Tare M; Apostolopoulos J; Favaloro JL; Triggle CR; Kemp-Harper BK Br J Pharmacol; 2009 Jun; 157(4):540-50. PubMed ID: 19338582 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]