These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19207787)

  • 1. A tissue-specific model of reentry in the right atrial appendage.
    Zhao J; Trew ML; Legrice IJ; Smaill BH; Pullan AJ
    J Cardiovasc Electrophysiol; 2009 Jun; 20(6):675-84. PubMed ID: 19207787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure specific models of electrical function in the right atrial appendage.
    Zhao J; Amiri A; Sands GB; Trew M; LeGrice I; Smaill BH; Pullan AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():145-8. PubMed ID: 19162614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring reentrant arrhythmias with numerical experiments: generic properties and model complexity.
    Starmer CF
    J Cardiovasc Electrophysiol; 2009 Jun; 20(6):685-8. PubMed ID: 19220566
    [No Abstract]   [Full Text] [Related]  

  • 4. Heterogeneous three-dimensional anatomical and electrophysiological model of human atria.
    Seemann G; Höper C; Sachse FB; Dössel O; Holden AV; Zhang H
    Philos Trans A Math Phys Eng Sci; 2006 Jun; 364(1843):1465-81. PubMed ID: 16766355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rate-dependent block in the sinus venosa of the swine heart during transverse right atrial activation: correlation between electrophysiologic and anatomic findings.
    Gonzalez MD; Erga KS; Rivera J; Contreras LJ; Mladinich CR; Schultz JD; Afonso VX
    J Cardiovasc Electrophysiol; 2005 Feb; 16(2):193-200. PubMed ID: 15720459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of M cells and the long QT syndrome in cardiac arrhythmias: simulation studies of reentrant excitations using a detailed electrophysiological model.
    Henry H; Rappel WJ
    Chaos; 2004 Mar; 14(1):172-82. PubMed ID: 15003058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image-based model of atrial anatomy and electrical activation: a computational platform for investigating atrial arrhythmia.
    Zhao J; Butters TD; Zhang H; LeGrice IJ; Sands GB; Smaill BH
    IEEE Trans Med Imaging; 2013 Jan; 32(1):18-27. PubMed ID: 23192521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of transition from normal to reentrant electrical activity in a model of rabbit atrial tissue: interaction of tissue heterogeneity and anisotropy.
    Aslanidi OV; Boyett MR; Dobrzynski H; Li J; Zhang H
    Biophys J; 2009 Feb; 96(3):798-817. PubMed ID: 19186122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of AV junctional reentry: role of the atrionodal junction.
    Mazgalev T; Dreifus LS; Bianchi J; Michelson EL
    Anat Rec; 1981 Sep; 201(1):179-88. PubMed ID: 7305019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reentrant arrhythmias and their control in models of mammalian cardiac tissue.
    Biktashev VN; Holden AV
    J Electrocardiol; 1999; 32 Suppl():76-83. PubMed ID: 10688306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of QRST integral maps with a membrane-based computer heart model employing parallel processing.
    Trudel MC; Dubé B; Potse M; Gulrajani RM; Leon LJ
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1319-29. PubMed ID: 15311816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental aspects of atrioventricular node reentry tachycardia.
    Van Hare GF
    J Electrocardiol; 2008; 41(6):480-2. PubMed ID: 18790500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filament behavior in a computational model of ventricular fibrillation in the canine heart.
    Clayton RH; Holden AV
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):28-34. PubMed ID: 14723491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An image-based model of atrial muscular architecture: effects of structural anisotropy on electrical activation.
    Zhao J; Butters TD; Zhang H; Pullan AJ; LeGrice IJ; Sands GB; Smaill BH
    Circ Arrhythm Electrophysiol; 2012 Apr; 5(2):361-70. PubMed ID: 22423141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac tissue geometry as a determinant of unidirectional conduction block: assessment of microscopic excitation spread by optical mapping in patterned cell cultures and in a computer model.
    Fast VG; Kléber AG
    Cardiovasc Res; 1995 May; 29(5):697-707. PubMed ID: 7606760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the hyperpolarization-activated inward current If in arrhythmogenesis: a computer model study.
    Kuijpers NH; Keldermann RH; ten Eikelder HM; Arts T; Hilbers PA
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1499-511. PubMed ID: 16916084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of the fiber curvature gradient on break excitation in cardiac tissue.
    Beaudoin DL; Roth BJ
    Pacing Clin Electrophysiol; 2006 May; 29(5):496-501. PubMed ID: 16689845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action potential morphology heterogeneity in the atrium and its effect on atrial reentry: a two-dimensional and quasi-three-dimensional study.
    Kuo SR; Trayanova NA
    Philos Trans A Math Phys Eng Sci; 2006 Jun; 364(1843):1349-66. PubMed ID: 16766349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atrial proarrhythmia due to increased inward rectifier current (I(K1)) arising from KCNJ2 mutation--a simulation study.
    Kharche S; Garratt CJ; Boyett MR; Inada S; Holden AV; Hancox JC; Zhang H
    Prog Biophys Mol Biol; 2008; 98(2-3):186-97. PubMed ID: 19041665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A time dependent anatomically detailed model of cardiac conduction.
    Saxberg BE; Grumbach MP; Cohen RJ
    Comput Cardiol; 1985; 12():401-4. PubMed ID: 11542765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.