These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 19208112)
1. DNA motif alignment by evolving a population of Markov chains. Bi C BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S13. PubMed ID: 19208112 [TBL] [Abstract][Full Text] [Related]
2. A Monte Carlo EM algorithm for de novo motif discovery in biomolecular sequences. Bi C IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(3):370-86. PubMed ID: 19644166 [TBL] [Abstract][Full Text] [Related]
3. SEAM: a Stochastic EM-type Algorithm for Motif-finding in biopolymer sequences. Bi C J Bioinform Comput Biol; 2007 Feb; 5(1):47-77. PubMed ID: 17477491 [TBL] [Abstract][Full Text] [Related]
4. Bayesian restoration of a hidden Markov chain with applications to DNA sequencing. Churchill GA; Lazareva B J Comput Biol; 1999; 6(2):261-77. PubMed ID: 10421527 [TBL] [Abstract][Full Text] [Related]
5. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny. Siddharthan R; Siggia ED; van Nimwegen E PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324 [TBL] [Abstract][Full Text] [Related]
6. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Altekar G; Dwarkadas S; Huelsenbeck JP; Ronquist F Bioinformatics; 2004 Feb; 20(3):407-15. PubMed ID: 14960467 [TBL] [Abstract][Full Text] [Related]
7. Repulsive parallel MCMC algorithm for discovering diverse motifs from large sequence sets. Ikebata H; Yoshida R Bioinformatics; 2015 May; 31(10):1561-8. PubMed ID: 25583120 [TBL] [Abstract][Full Text] [Related]
8. Memetic algorithms for de novo motif-finding in biomedical sequences. Bi C Artif Intell Med; 2012 Sep; 56(1):1-17. PubMed ID: 22613029 [TBL] [Abstract][Full Text] [Related]
9. A simulated annealing algorithm for finding consensus sequences. Keith JM; Adams P; Bryant D; Kroese DP; Mitchelson KR; Cochran DA; Lala GH Bioinformatics; 2002 Nov; 18(11):1494-9. PubMed ID: 12424121 [TBL] [Abstract][Full Text] [Related]
10. Gapped alignment of protein sequence motifs through Monte Carlo optimization of a hidden Markov model. Neuwald AF; Liu JS BMC Bioinformatics; 2004 Oct; 5():157. PubMed ID: 15504234 [TBL] [Abstract][Full Text] [Related]
13. On the Monte-Carlo expectation maximization for finding motifs in DNA sequences. Maiti A; Mukherjee A IEEE J Biomed Health Inform; 2015 Mar; 19(2):677-86. PubMed ID: 24833606 [TBL] [Abstract][Full Text] [Related]
14. Limitations and potentials of current motif discovery algorithms. Hu J; Li B; Kihara D Nucleic Acids Res; 2005; 33(15):4899-913. PubMed ID: 16284194 [TBL] [Abstract][Full Text] [Related]
15. The Gibbs Centroid Sampler. Thompson WA; Newberg LA; Conlan S; McCue LA; Lawrence CE Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W232-7. PubMed ID: 17483517 [TBL] [Abstract][Full Text] [Related]
16. A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length. Favorov AV; Gelfand MS; Gerasimova AV; Ravcheev DA; Mironov AA; Makeev VJ Bioinformatics; 2005 May; 21(10):2240-5. PubMed ID: 15728117 [TBL] [Abstract][Full Text] [Related]
17. Voting algorithms for the motif finding problem. Liu X; Ma B; Wang L Comput Syst Bioinformatics Conf; 2008; 7():37-47. PubMed ID: 19642267 [TBL] [Abstract][Full Text] [Related]
18. Statistical alignment with a sequence evolution model allowing rate heterogeneity along the sequence. Arribas-Gil A; Metzler D; Plouhinec JL IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(2):281-95. PubMed ID: 19407352 [TBL] [Abstract][Full Text] [Related]
19. Logos: a modular bayesian model for de novo motif detection. Xing EP; Wu W; Jordan MI; Karp RM J Bioinform Comput Biol; 2004 Mar; 2(1):127-54. PubMed ID: 15272436 [TBL] [Abstract][Full Text] [Related]
20. Randomized algorithms for motif detection. Wang L; Dong L J Bioinform Comput Biol; 2005 Oct; 3(5):1039-52. PubMed ID: 16278946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]