These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 19208113)

  • 1. Parallel short sequence assembly of transcriptomes.
    Jackson BG; Schnable PS; Aluru S
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S14. PubMed ID: 19208113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of de novo transcriptome assembly from next-generation sequencing data.
    Surget-Groba Y; Montoya-Burgos JI
    Genome Res; 2010 Oct; 20(10):1432-40. PubMed ID: 20693479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A strategy for assembling the maize (Zea mays L.) genome.
    Emrich SJ; Aluru S; Fu Y; Wen TJ; Narayanan M; Guo L; Ashlock DA; Schnable PS
    Bioinformatics; 2004 Jan; 20(2):140-7. PubMed ID: 14734303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo transcriptome assembly with ABySS.
    Birol I; Jackman SD; Nielsen CB; Qian JQ; Varhol R; Stazyk G; Morin RD; Zhao Y; Hirst M; Schein JE; Horsman DE; Connors JM; Gascoyne RD; Marra MA; Jones SJ
    Bioinformatics; 2009 Nov; 25(21):2872-7. PubMed ID: 19528083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time resolution of short-read assembly graph using ONT long reads.
    Nguyen SH; Cao MD; Coin LJM
    PLoS Comput Biol; 2021 Jan; 17(1):e1008586. PubMed ID: 33471816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TraRECo: a greedy approach based de novo transcriptome assembler with read error correction using consensus matrix.
    Yoon S; Kim D; Kang K; Park WJ
    BMC Genomics; 2018 Sep; 19(1):653. PubMed ID: 30180798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graph mining for next generation sequencing: leveraging the assembly graph for biological insights.
    Warnke-Sommer J; Ali H
    BMC Genomics; 2016 May; 17():340. PubMed ID: 27154001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ALLPATHS: de novo assembly of whole-genome shotgun microreads.
    Butler J; MacCallum I; Kleber M; Shlyakhter IA; Belmonte MK; Lander ES; Nusbaum C; Jaffe DB
    Genome Res; 2008 May; 18(5):810-20. PubMed ID: 18340039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges and advances for transcriptome assembly in non-model species.
    Ungaro A; Pech N; Martin JF; McCairns RJS; Mévy JP; Chappaz R; Gilles A
    PLoS One; 2017; 12(9):e0185020. PubMed ID: 28931057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hybrid Parallel Strategy Based on String Graph Theory to Improve De Novo DNA Assembly on the TianHe-2 Supercomputer.
    Zhang F; Liao X; Peng S; Cui Y; Wang B; Zhu X; Liu J
    Interdiscip Sci; 2016 Jun; 8(2):169-176. PubMed ID: 26403255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Apache Spark on genome assembly for scalable overlap-graph reduction.
    Paul AJ; Lawrence D; Song M; Lim SH; Pan C; Ahn TH
    Hum Genomics; 2019 Oct; 13(Suppl 1):48. PubMed ID: 31639049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembling genomes using short-read sequencing technology.
    Jackman SD; Birol I
    Genome Biol; 2010 Jan; 11(1):202. PubMed ID: 20128932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid hybrid de novo assembly of a microbial genome using only short reads: Corynebacterium pseudotuberculosis I19 as a case study.
    Cerdeira LT; Carneiro AR; Ramos RT; de Almeida SS; D'Afonseca V; Schneider MP; Baumbach J; Tauch A; McCulloch JA; Azevedo VA; Silva A
    J Microbiol Methods; 2011 Aug; 86(2):218-23. PubMed ID: 21620904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Omega: an overlap-graph de novo assembler for metagenomics.
    Haider B; Ahn TH; Bushnell B; Chai J; Copeland A; Pan C
    Bioinformatics; 2014 Oct; 30(19):2717-22. PubMed ID: 24947750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximum likelihood genome assembly.
    Medvedev P; Brudno M
    J Comput Biol; 2009 Aug; 16(8):1101-16. PubMed ID: 19645596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A parallel algorithm for error correction in high-throughput short-read data on CUDA-enabled graphics hardware.
    Shi H; Schmidt B; Liu W; Müller-Wittig W
    J Comput Biol; 2010 Apr; 17(4):603-15. PubMed ID: 20426693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylation-sensitive linking libraries enhance gene-enriched sequencing of complex genomes and map DNA methylation domains.
    Nelson W; Luo M; Ma J; Estep M; Estill J; He R; Talag J; Sisneros N; Kudrna D; Kim H; Ammiraju JS; Collura K; Bharti AK; Messing J; Wing RA; SanMiguel P; Bennetzen JL; Soderlund C
    BMC Genomics; 2008 Dec; 9():621. PubMed ID: 19099592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAGE2: parallel human genome assembly.
    Molnar M; Haghshenas E; Ilie L
    Bioinformatics; 2018 Feb; 34(4):678-680. PubMed ID: 29045591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.