These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19208161)

  • 21. Analysis of complex metabolic behavior through pathway decomposition.
    Ip K; Colijn C; Lun DS
    BMC Syst Biol; 2011 Jun; 5():91. PubMed ID: 21639889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FFCA: a feasibility-based method for flux coupling analysis of metabolic networks.
    David L; Marashi SA; Larhlimi A; Mieth B; Bockmayr A
    BMC Bioinformatics; 2011 Jun; 12():236. PubMed ID: 21676263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum.
    Wiback SJ; Mahadevan R; Palsson BØ
    J Theor Biol; 2003 Oct; 224(3):313-24. PubMed ID: 12941590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum.
    Wiback SJ; Mahadevan R; Palsson BØ
    Biotechnol Bioeng; 2004 May; 86(3):317-31. PubMed ID: 15083512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A scalable algorithm to explore the Gibbs energy landscape of genome-scale metabolic networks.
    De Martino D; Figliuzzi M; De Martino A; Marinari E
    PLoS Comput Biol; 2012; 8(6):e1002562. PubMed ID: 22737065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extreme pathway lengths and reaction participation in genome-scale metabolic networks.
    Papin JA; Price ND; Palsson BØ
    Genome Res; 2002 Dec; 12(12):1889-900. PubMed ID: 12466293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems.
    Schilling CH; Edwards JS; Letscher D; Palsson BØ
    Biotechnol Bioeng; 2000-2001; 71(4):286-306. PubMed ID: 11291038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Which metabolic pathways generate and characterize the flux space? A comparison among elementary modes, extreme pathways and minimal generators.
    Llaneras F; Picó J
    J Biomed Biotechnol; 2010; 2010():753904. PubMed ID: 20467567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Minimal cut sets in a metabolic network are elementary modes in a dual network.
    Ballerstein K; von Kamp A; Klamt S; Haus UU
    Bioinformatics; 2012 Feb; 28(3):381-7. PubMed ID: 22190691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmental versatility promotes modularity in genome-scale metabolic networks.
    Samal A; Wagner A; Martin OC
    BMC Syst Biol; 2011 Aug; 5():135. PubMed ID: 21864340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extreme pathway analysis reveals the organizing rules of metabolic regulation.
    Xi Y; Wang F
    PLoS One; 2019; 14(2):e0210539. PubMed ID: 30721240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computing irreversible minimal cut sets in genome-scale metabolic networks via flux cone projection.
    Röhl A; Riou T; Bockmayr A
    Bioinformatics; 2019 Aug; 35(15):2618-2625. PubMed ID: 30590390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computing Elementary Flux Modes Involving a Set of Target Reactions.
    David L; Bockmayr A
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):1099-107. PubMed ID: 26357047
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acorn: a grid computing system for constraint based modeling and visualization of the genome scale metabolic reaction networks via a web interface.
    Sroka J; Bieniasz-Krzywiec L; Gwóźdź S; Leniowski D; Lącki J; Markowski M; Avignone-Rossa C; Bushell ME; McFadden J; Kierzek AM
    BMC Bioinformatics; 2011 May; 12():196. PubMed ID: 21609434
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data.
    Motamedian E; Mohammadi M; Shojaosadati SA; Heydari M
    Bioinformatics; 2017 Apr; 33(7):1057-1063. PubMed ID: 28065897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Speeding up the core algorithm for the dual calculation of minimal cut sets in large metabolic networks.
    Klamt S; Mahadevan R; von Kamp A
    BMC Bioinformatics; 2020 Nov; 21(1):510. PubMed ID: 33167871
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing the optimal flux space of genome-scale metabolic reconstructions through modified latin-hypercube sampling.
    Chaudhary N; Tøndel K; Bhatnagar R; dos Santos VA; Puchałka J
    Mol Biosyst; 2016 Mar; 12(3):994-1005. PubMed ID: 26818782
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of redundancy and systems properties of the metabolic network of Helicobacter pylori using genome-scale extreme pathway analysis.
    Price ND; Papin JA; Palsson BØ
    Genome Res; 2002 May; 12(5):760-9. PubMed ID: 11997342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational identification of altered metabolism using gene expression and metabolic pathways.
    Nam H; Lee J; Lee D
    Biotechnol Bioeng; 2009 Jul; 103(4):835-43. PubMed ID: 19378263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.