These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 19208249)
1. Synteny of Prunus and other model plant species. Jung S; Jiwan D; Cho I; Lee T; Abbott A; Sosinski B; Main D BMC Genomics; 2009 Feb; 10():76. PubMed ID: 19208249 [TBL] [Abstract][Full Text] [Related]
2. Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. Jung S; Main D; Staton M; Cho I; Zhebentyayeva T; Arús P; Abbott A BMC Genomics; 2006 Apr; 7():81. PubMed ID: 16615871 [TBL] [Abstract][Full Text] [Related]
3. [Microsynteny analysis of tomato and peach genome]. Song C; Wang Y Yi Chuan; 2010 Sep; 32(9):966-73. PubMed ID: 20870619 [TBL] [Abstract][Full Text] [Related]
4. Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny. Kevei Z; Seres A; Kereszt A; Kaló P; Kiss P; Tóth G; Endre G; Kiss GB Mol Genet Genomics; 2005 Dec; 274(6):644-57. PubMed ID: 16273388 [TBL] [Abstract][Full Text] [Related]
5. Structure of two melon regions reveals high microsynteny with sequenced plant species. Deleu W; González V; Monfort A; Bendahmane A; Puigdomènech P; Arús P; Garcia-Mas J Mol Genet Genomics; 2007 Dec; 278(6):611-22. PubMed ID: 17665215 [TBL] [Abstract][Full Text] [Related]
6. Physical mapping of a pollen modifier locus controlling self-incompatibility in apricot and synteny analysis within the Rosaceae. Zuriaga E; Molina L; Badenes ML; Romero C Plant Mol Biol; 2012 Jun; 79(3):229-42. PubMed ID: 22481163 [TBL] [Abstract][Full Text] [Related]
7. Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization. Zhu H; Kim DJ; Baek JM; Choi HK; Ellis LC; Küester H; McCombie WR; Peng HM; Cook DR Plant Physiol; 2003 Mar; 131(3):1018-26. PubMed ID: 12644654 [TBL] [Abstract][Full Text] [Related]
8. Narrowing down the apricot Plum pox virus resistance locus and comparative analysis with the peach genome syntenic region. Vera Ruiz EM; Soriano JM; Romero C; Zhebentyayeva T; Terol J; Zuriaga E; Llácer G; Abbott AG; Badenes ML Mol Plant Pathol; 2011 Aug; 12(6):535-47. PubMed ID: 21722293 [TBL] [Abstract][Full Text] [Related]
9. Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. Cabrera A; Kozik A; Howad W; Arus P; Iezzoni AF; van der Knaap E BMC Genomics; 2009 Nov; 10():562. PubMed ID: 19943965 [TBL] [Abstract][Full Text] [Related]
10. Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana. Mudge J; Cannon SB; Kalo P; Oldroyd GE; Roe BA; Town CD; Young ND BMC Plant Biol; 2005 Aug; 5():15. PubMed ID: 16102170 [TBL] [Abstract][Full Text] [Related]
11. Comparison of peach and Arabidopsis genomic sequences: fragmentary conservation of gene neighborhoods. Georgi LL; Wang Y; Reighard GL; Mao L; Wing RA; Abbott AG Genome; 2003 Apr; 46(2):268-76. PubMed ID: 12723043 [TBL] [Abstract][Full Text] [Related]
12. Comparative physical mapping reveals features of microsynteny between Glycine max, Medicago truncatula, and Arabidopsis thaliana. Yan HH; Mudge J; Kim DJ; Shoemaker RC; Cook DR; Young ND Genome; 2004 Feb; 47(1):141-55. PubMed ID: 15060611 [TBL] [Abstract][Full Text] [Related]
13. Genomic analysis reveals MATH gene(s) as candidate(s) for Plum pox virus (PPV) resistance in apricot (Prunus armeniaca L.). Zuriaga E; Soriano JM; Zhebentyayeva T; Romero C; Dardick C; Cañizares J; Badenes ML Mol Plant Pathol; 2013 Sep; 14(7):663-77. PubMed ID: 23672686 [TBL] [Abstract][Full Text] [Related]
14. An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. Bertioli DJ; Moretzsohn MC; Madsen LH; Sandal N; Leal-Bertioli SC; Guimarães PM; Hougaard BK; Fredslund J; Schauser L; Nielsen AM; Sato S; Tabata S; Cannon SB; Stougaard J BMC Genomics; 2009 Jan; 10():45. PubMed ID: 19166586 [TBL] [Abstract][Full Text] [Related]
15. Substantial genome synteny preservation among woody angiosperm species: comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes. Staton M; Zhebentyayeva T; Olukolu B; Fang GC; Nelson D; Carlson JE; Abbott AG BMC Genomics; 2015 Oct; 16():744. PubMed ID: 26438416 [TBL] [Abstract][Full Text] [Related]
16. Estimates of conserved microsynteny among the genomes of Glycine max, Medicago truncatula and Arabidopsis thaliana. Yan HH; Mudge J; Kim DJ; Larsen D; Shoemaker RC; Cook DR; Young ND Theor Appl Genet; 2003 May; 106(7):1256-65. PubMed ID: 12748777 [TBL] [Abstract][Full Text] [Related]
17. Comparative genomic sequence analysis of strawberry and other rosids reveals significant microsynteny. Jung S; Cho I; Sosinski B; Abbott A; Main D BMC Res Notes; 2010 Jun; 3():168. PubMed ID: 20565715 [TBL] [Abstract][Full Text] [Related]
18. Comparison of homoeolocus organisation in paired BAC clones from white clover (Trifolium repens L.) and microcolinearity with model legume species. Hand ML; Cogan NO; Sawbridge TI; Spangenberg GC; Forster JW BMC Plant Biol; 2010 May; 10():94. PubMed ID: 20492736 [TBL] [Abstract][Full Text] [Related]
19. Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Lyons E; Pedersen B; Kane J; Alam M; Ming R; Tang H; Wang X; Bowers J; Paterson A; Lisch D; Freeling M Plant Physiol; 2008 Dec; 148(4):1772-81. PubMed ID: 18952863 [TBL] [Abstract][Full Text] [Related]
20. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Dirlewanger E; Graziano E; Joobeur T; Garriga-Calderé F; Cosson P; Howad W; Arús P Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9891-6. PubMed ID: 15159547 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]