BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19208640)

  • 1. Evolutionary Conserved Motif Finder (ECMFinder) for genome-wide identification of clustered YY1- and CTCF-binding sites.
    Kang K; Chung JH; Kim J
    Nucleic Acids Res; 2009 Apr; 37(6):2003-13. PubMed ID: 19208640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-binding by YY1 identifies the transcriptionally active, highly conserved set of CTCF-bound regions in primate genomes.
    Schwalie PC; Ward MC; Cain CE; Faure AJ; Gilad Y; Odom DT; Flicek P
    Genome Biol; 2013 Dec; 14(12):R148. PubMed ID: 24380390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple YY1 and CTCF binding sites in imprinting control regions.
    Kim J
    Epigenetics; 2008; 3(3):115-8. PubMed ID: 18458536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data.
    Jothi R; Cuddapah S; Barski A; Cui K; Zhao K
    Nucleic Acids Res; 2008 Sep; 36(16):5221-31. PubMed ID: 18684996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imprinted genes show unique patterns of sequence conservation.
    Hutter B; Bieg M; Helms V; Paulsen M
    BMC Genomics; 2010 Nov; 11():649. PubMed ID: 21092170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The murine IgH locus contains a distinct DNA sequence motif for the chromatin regulatory factor CTCF.
    Ciccone DN; Namiki Y; Chen C; Morshead KB; Wood AL; Johnston CM; Morris JW; Wang Y; Sadreyev R; Corcoran AE; Matthews AGW; Oettinger MA
    J Biol Chem; 2019 Sep; 294(37):13580-13592. PubMed ID: 31285261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a Ctcf cofactor, Yy1, for the X chromosome binary switch.
    Donohoe ME; Zhang LF; Xu N; Shi Y; Lee JT
    Mol Cell; 2007 Jan; 25(1):43-56. PubMed ID: 17218270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites.
    Xie X; Mikkelsen TS; Gnirke A; Lindblad-Toh K; Kellis M; Lander ES
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):7145-50. PubMed ID: 17442748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. T-KDE: a method for genome-wide identification of constitutive protein binding sites from multiple ChIP-seq data sets.
    Li Y; Umbach DM; Li L
    BMC Genomics; 2014 Jan; 15():27. PubMed ID: 24428924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. YY1's DNA-binding motifs in mammalian olfactory receptor genes.
    Faulk CD; Kim J
    BMC Genomics; 2009 Dec; 10():576. PubMed ID: 19958529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylation-sensitive binding of transcription factor YY1 to an insulator sequence within the paternally expressed imprinted gene, Peg3.
    Kim J; Kollhoff A; Bergmann A; Stubbs L
    Hum Mol Genet; 2003 Feb; 12(3):233-45. PubMed ID: 12554678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome.
    Kim TH; Abdullaev ZK; Smith AD; Ching KA; Loukinov DI; Green RD; Zhang MQ; Lobanenkov VV; Ren B
    Cell; 2007 Mar; 128(6):1231-45. PubMed ID: 17382889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages.
    Schmidt D; Schwalie PC; Wilson MD; Ballester B; Gonçalves A; Kutter C; Brown GD; Marshall A; Flicek P; Odom DT
    Cell; 2012 Jan; 148(1-2):335-48. PubMed ID: 22244452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment.
    Beagan JA; Duong MT; Titus KR; Zhou L; Cao Z; Ma J; Lachanski CV; Gillis DR; Phillips-Cremins JE
    Genome Res; 2017 Jul; 27(7):1139-1152. PubMed ID: 28536180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. YY1 associates with the macrosatellite DXZ4 on the inactive X chromosome and binds with CTCF to a hypomethylated form in some male carcinomas.
    Moseley SC; Rizkallah R; Tremblay DC; Anderson BR; Hurt MM; Chadwick BP
    Nucleic Acids Res; 2012 Feb; 40(4):1596-608. PubMed ID: 22064860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomics modeling of the NRSF/REST repressor network: from single conserved sites to genome-wide repertoire.
    Mortazavi A; Leeper Thompson EC; Garcia ST; Myers RM; Wold B
    Genome Res; 2006 Oct; 16(10):1208-21. PubMed ID: 16963704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The human enhancer blocker CTC-binding factor interacts with the transcription factor Kaiso.
    Defossez PA; Kelly KF; Filion GJ; Pérez-Torrado R; Magdinier F; Menoni H; Nordgaard CL; Daniel JM; Gilson E
    J Biol Chem; 2005 Dec; 280(52):43017-23. PubMed ID: 16230345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CTCF binding site sequence differences are associated with unique regulatory and functional trends during embryonic stem cell differentiation.
    Plasschaert RN; Vigneau S; Tempera I; Gupta R; Maksimoska J; Everett L; Davuluri R; Mamorstein R; Lieberman PM; Schultz D; Hannenhalli S; Bartolomei MS
    Nucleic Acids Res; 2014 Jan; 42(2):774-89. PubMed ID: 24121688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High affinity YY1 binding motifs: identification of two core types (ACAT and CCAT) and distribution of potential binding sites within the human beta globin cluster.
    Yant SR; Zhu W; Millinoff D; Slightom JL; Goodman M; Gumucio DL
    Nucleic Acids Res; 1995 Nov; 23(21):4353-62. PubMed ID: 7501456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive evolution and the birth of CTCF binding sites in the Drosophila genome.
    Ni X; Zhang YE; Nègre N; Chen S; Long M; White KP
    PLoS Biol; 2012; 10(11):e1001420. PubMed ID: 23139640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.