These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 19208927)

  • 1. The effect of sequence of skating-specific training on skating performance.
    Farlinger CM; Fowles JR
    Int J Sports Physiol Perform; 2008 Jun; 3(2):185-98. PubMed ID: 19208927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of Ice Hockey Players' On-Ice Sprint With Combined Plyometric and Strength Training.
    Dæhlin TE; Haugen OC; Haugerud S; Hollan I; Raastad T; Rønnestad BR
    Int J Sports Physiol Perform; 2017 Aug; 12(7):893-900. PubMed ID: 27918670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships to skating performance in competitive hockey players.
    Farlinger CM; Kruisselbrink LD; Fowles JR
    J Strength Cond Res; 2007 Aug; 21(3):915-22. PubMed ID: 17685681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship of off-ice and on-ice performance measures in high school male hockey players.
    Krause DA; Smith AM; Holmes LC; Klebe CR; Lee JB; Lundquist KM; Eischen JJ; Hollman JH
    J Strength Cond Res; 2012 May; 26(5):1423-30. PubMed ID: 22395275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship Between Physiological Off-Ice Testing, On-Ice Skating, and Game Performance in Division I Female Ice Hockey Players.
    Boland M; Delude K; Miele EM
    J Strength Cond Res; 2019 Jun; 33(6):1619-1628. PubMed ID: 29016475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Impact of an 8-Week Resisted Sprint Training Program on Ice Skating Performance in Male Youth Ice Hockey Players.
    Dietze-Hermosa MS; Montalvo S; Gonzalez MP; Dorgo S
    J Strength Cond Res; 2024 May; 38(5):957-965. PubMed ID: 38620058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Skating Top Speed, Acceleration, and Multiple Repeated Sprint Speed Ice Hockey Performance Tests.
    Bond CW; Bennett TW; Noonan BC
    J Strength Cond Res; 2018 Aug; 32(8):2273-2283. PubMed ID: 29878985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skating crossovers on a motorized flywheel: a preliminary experimental design to test effect on speed and on crossovers.
    Smith AM; Krause DA; Stuart MJ; Montelpare WJ; Sorenson MC; Link AA; Gaz DV; Twardowski CP; Larson DR; Stuart MB
    J Strength Cond Res; 2013 Dec; 27(12):3412-8. PubMed ID: 23539081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship Between Skating Economy and Performance During a Repeated-Shift Test in Elite and Subelite Ice Hockey Players.
    Lamoureux NR; Tomkinson GR; Peterson BJ; Fitzgerald JS
    J Strength Cond Res; 2018 Apr; 32(4):1109-1113. PubMed ID: 29324580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Division I Hockey Players Generate More Power Than Division III Players During on- and Off-Ice Performance Tests.
    Peterson BJ; Fitzgerald JS; Dietz CC; Ziegler KS; Ingraham SJ; Baker SE; Snyder EM
    J Strength Cond Res; 2015 May; 29(5):1191-6. PubMed ID: 25436625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological correlates of skating performance in women's and men's ice hockey.
    Gilenstam KM; Thorsen K; Henriksson-Larsén KB
    J Strength Cond Res; 2011 Aug; 25(8):2133-42. PubMed ID: 21785292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of High-Intensity Skating in Top-Class Ice Hockey Match-Play in Relation to Training Status and Muscle Damage.
    Lignell E; Fransson D; Krustrup P; Mohr M
    J Strength Cond Res; 2018 May; 32(5):1303-1310. PubMed ID: 28557852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex training in ice hockey: the effects of a heavy resisted sprint on subsequent ice-hockey sprint performance.
    Matthews MJ; Comfort P; Crebin R
    J Strength Cond Res; 2010 Nov; 24(11):2883-7. PubMed ID: 20940636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictors of Speed Using Off-Ice Measures of College Hockey Players.
    Runner AR; Lehnhard RA; Butterfield SA; Tu S; OʼNeill T
    J Strength Cond Res; 2016 Jun; 30(6):1626-32. PubMed ID: 25719922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum Strength and Power as Determinants of Match Skating Performance in Elite Youth Ice Hockey Players.
    Keiner M; Kierot M; Stendahl M; Brauner T; Suchomel TJ
    J Strength Cond Res; 2024 Jun; 38(6):1090-1094. PubMed ID: 38335067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between body composition, leg strength, anaerobic power, and on-ice skating performance in division I men's hockey athletes.
    Potteiger JA; Smith DL; Maier ML; Foster TS
    J Strength Cond Res; 2010 Jul; 24(7):1755-62. PubMed ID: 20543730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability of Three Timing Systems Used to Time Short on Ice-Skating Sprints in Ice Hockey Players.
    Bond CW; Willaert EM; Rudningen KE; Noonan BC
    J Strength Cond Res; 2017 Dec; 31(12):3279-3286. PubMed ID: 28858060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological, Physiological and Skating Performance Profiles of Male Age-Group Elite Ice Hockey Players.
    Allisse M; Sercia P; Comtois AS; Leone M
    J Hum Kinet; 2017 Sep; 58():87-97. PubMed ID: 28828080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of a complex training program on skating abilities in ice hockey players.
    Lee C; Lee S; Yoo J
    J Phys Ther Sci; 2014 Apr; 26(4):533-7. PubMed ID: 24764628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a wearable monitoring tool for in-field ice hockey skating performance analysis.
    Stetter BJ; Buckeridge E; Nigg SR; Sell S; Stein T
    Eur J Sport Sci; 2019 Aug; 19(7):893-901. PubMed ID: 30606093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.