BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 19209302)

  • 1. Self-assembly of electro-active protein architectures on electrodes for the construction of biomimetic signal chains.
    Lisdat F; Dronov R; Möhwald H; Scheller FW; Kurth DG
    Chem Commun (Camb); 2009 Jan; (3):274-83. PubMed ID: 19209302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the formation and operation of polyaniline sulfonate/cytochrome c multilayer electrodes: contributions of polyelectrolytes' properties.
    Sarauli D; Tanne J; Xu C; Schulz B; Trnkova L; Lisdat F
    Phys Chem Chem Phys; 2010 Nov; 12(42):14271-7. PubMed ID: 20882225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layer-by-layer assembly of electro-active gold nanoparticle/cytochrome c multilayers.
    Bonk SM; Lisdat F
    Biosens Bioelectron; 2009 Dec; 25(4):739-44. PubMed ID: 19747815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A superoxide sensor based on a multilayer cytochrome c electrode.
    Beissenhirtz MK; Scheller FW; Lisdat F
    Anal Chem; 2004 Aug; 76(16):4665-71. PubMed ID: 15307774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of pyrroloquinoline quinone dependent glucose dehydrogenase to (cytochrome c/DNA)-multilayer systems on electrodes.
    Wettstein Ch; Möhwald H; Lisdat F
    Bioelectrochemistry; 2012 Dec; 88():97-102. PubMed ID: 22814119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers.
    Feifel SC; Lisdat F
    J Nanobiotechnology; 2011 Dec; 9():59. PubMed ID: 22208693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroactive multilayer assemblies of bilirubin oxidase and human cytochrome C mutants: insight in formation and kinetic behavior.
    Wegerich F; Turano P; Allegrozzi M; Möhwald H; Lisdat F
    Langmuir; 2011 Apr; 27(7):4202-11. PubMed ID: 21401056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of S-layer-enveloped cytochrome c polyelectrolyte multilayers.
    Dronov R; Kurth DG; Möhwald H; Scheller FW; Friedmann J; Pum D; Sleytr UB; Lisdat F
    Langmuir; 2008 Aug; 24(16):8779-84. PubMed ID: 18642859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytochrome c/polyelectrolyte multilayers investigated by E-QCM-D: effect of temperature on the assembly structure.
    Kepplinger C; Lisdat F; Wollenberger U
    Langmuir; 2011 Jul; 27(13):8309-15. PubMed ID: 21634413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron transfer in SAM/cytochrome/polyelectrolyte hybrid systems on electrodes: a time-resolved surface-enhanced resonance Raman study.
    Grochol J; Dronov R; Lisdat F; Hildebrandt P; Murgida DH
    Langmuir; 2007 Oct; 23(22):11289-94. PubMed ID: 17902715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct electrochemistry of heme multicofactor-containing enzymes on alkanethiol-modified gold electrodes.
    E Ferapontova E; Gorton L
    Bioelectrochemistry; 2005 Apr; 66(1-2):55-63. PubMed ID: 15833703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of polyoxometalate/protein ultrathin films grown on electrode surfaces using layer-by-layer assembly.
    Jiang K; Zhang H; Shannon C; Zhan W
    Langmuir; 2008 Apr; 24(7):3584-9. PubMed ID: 18284261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical characterization of polyelectrolyte/gold nanoparticle multilayers self-assembled on gold electrodes.
    Chirea M; García-Morales V; Manzanares JA; Pereira C; Gulaboski R; Silva F
    J Phys Chem B; 2005 Nov; 109(46):21808-17. PubMed ID: 16853832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytically active silica nanoparticle-based supramolecular architectures of two proteins--cellobiose dehydrogenase and cytochrome C on electrodes.
    Feifel SC; Ludwig R; Gorton L; Lisdat F
    Langmuir; 2012 Jun; 28(25):9189-94. PubMed ID: 22663060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topological and electron-transfer properties of yeast cytochrome c adsorbed on bare gold electrodes.
    Bonanni B; Alliata D; Bizzarri AR; Cannistraro S
    Chemphyschem; 2003 Nov; 4(11):1183-8. PubMed ID: 14652996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroactive nanobiomolecular architectures of laccase and cytochrome c on electrodes: applying silica nanoparticles as artificial matrix.
    Feifel SC; Kapp A; Lisdat F
    Langmuir; 2014 May; 30(19):5363-7. PubMed ID: 24804981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes.
    Alvarez-Paggi D; Martín DF; DeBiase PM; Hildebrandt P; Martí MA; Murgida DH
    J Am Chem Soc; 2010 Apr; 132(16):5769-78. PubMed ID: 20361782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron transfer and ligand binding to cytochrome c' immobilized on self-assembled monolayers.
    de Groot MT; Evers TH; Merkx M; Koper MT
    Langmuir; 2007 Jan; 23(2):729-36. PubMed ID: 17209627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of the gating step in protein electron transfer: electric-field-controlled protein dynamics.
    Kranich A; Ly HK; Hildebrandt P; Murgida DH
    J Am Chem Soc; 2008 Jul; 130(30):9844-8. PubMed ID: 18593159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monolayer-protected nanoparticle film assemblies as platforms for controlling interfacial and adsorption properties in protein monolayer electrochemistry.
    Loftus AF; Reighard KP; Kapourales SA; Leopold MC
    J Am Chem Soc; 2008 Feb; 130(5):1649-61. PubMed ID: 18189391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.