These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 19209336)
1. Cell-free protein expression in a microchannel array with passive pumping. Khnouf R; Beebe DJ; Fan ZH Lab Chip; 2009 Jan; 9(1):56-61. PubMed ID: 19209336 [TBL] [Abstract][Full Text] [Related]
2. Cell-free protein synthesis in microfluidic array devices. Mei Q; Fredrickson CK; Simon A; Khnouf R; Fan ZH Biotechnol Prog; 2007; 23(6):1305-11. PubMed ID: 17924644 [TBL] [Abstract][Full Text] [Related]
3. Protein synthesis in a device with nanoporous membranes and microchannels. Mei Q; Khnouf R; Simon A; Fan ZH Lab Chip; 2010 Oct; 10(19):2541-5. PubMed ID: 20730191 [TBL] [Abstract][Full Text] [Related]
4. Flow rate analysis of a surface tension driven passive micropump. Berthier E; Beebe DJ Lab Chip; 2007 Nov; 7(11):1475-8. PubMed ID: 17960274 [TBL] [Abstract][Full Text] [Related]
5. An integrated device for monitoring time-dependent in vitro expression from single genes in picolitre droplets. Courtois F; Olguin LF; Whyte G; Bratton D; Huck WT; Abell C; Hollfelder F Chembiochem; 2008 Feb; 9(3):439-46. PubMed ID: 18232037 [TBL] [Abstract][Full Text] [Related]
6. A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis. Choi CJ; Cunningham BT Lab Chip; 2007 May; 7(5):550-6. PubMed ID: 17476372 [TBL] [Abstract][Full Text] [Related]
7. Fabrication optimization of a miniaturized array device for cell-free protein synthesis. Khnouf R; Chapman BD; Fan ZH Electrophoresis; 2011 Nov; 32(22):3101-7. PubMed ID: 22038694 [TBL] [Abstract][Full Text] [Related]
8. High-throughput microfluidics: improved sample treatment and washing over standard wells. Warrick J; Meyvantsson I; Ju J; Beebe DJ Lab Chip; 2007 Mar; 7(3):316-21. PubMed ID: 17330162 [TBL] [Abstract][Full Text] [Related]
9. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Tan YC; Fisher JS; Lee AI; Cristini V; Lee AP Lab Chip; 2004 Aug; 4(4):292-8. PubMed ID: 15269794 [TBL] [Abstract][Full Text] [Related]
11. Toxin detection by a miniaturized in vitro protein expression array. Mei Q; Fredrickson CK; Jin S; Fan ZH Anal Chem; 2005 Sep; 77(17):5494-500. PubMed ID: 16131058 [TBL] [Abstract][Full Text] [Related]
14. Optimization of a miniaturized fluid array device for cell-free protein synthesis. Jackson K; Jin S; Fan ZH Biotechnol Bioeng; 2015 Dec; 112(12):2459-67. PubMed ID: 26037852 [TBL] [Abstract][Full Text] [Related]
15. A microfluidic abacus channel for controlling the addition of droplets. Um E; Park JK Lab Chip; 2009 Jan; 9(2):207-12. PubMed ID: 19107275 [TBL] [Abstract][Full Text] [Related]
16. On-chip electrocoalescence of microdroplets as a function of voltage, frequency and droplet size. Zagnoni M; Cooper JM Lab Chip; 2009 Sep; 9(18):2652-8. PubMed ID: 19704980 [TBL] [Abstract][Full Text] [Related]
17. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. Zheng B; Roach LS; Ismagilov RF J Am Chem Soc; 2003 Sep; 125(37):11170-1. PubMed ID: 16220918 [TBL] [Abstract][Full Text] [Related]
18. Cell-free expression of soluble and membrane proteins in an array device for drug screening. Khnouf R; Olivero D; Jin S; Coleman MA; Fan ZH Anal Chem; 2010 Aug; 82(16):7021-6. PubMed ID: 20666430 [TBL] [Abstract][Full Text] [Related]
19. Ricin detection by biological signal amplification in a well-in-a-well device. Mei Q; Fredrickson CK; Lian W; Jin S; Fan ZH Anal Chem; 2006 Nov; 78(22):7659-64. PubMed ID: 17105156 [TBL] [Abstract][Full Text] [Related]
20. Miniaturized fluid array for high-throughput protein expression. Khnouf R; Olivero D; Jin S; Fan ZH Biotechnol Prog; 2010; 26(6):1590-6. PubMed ID: 20661923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]