These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 19209639)
1. Phylogenetic analysis and arsenate reduction effect of the arsenic-reducing bacteria enriched from contaminated soils at an abandoned smelter site. Zhang X; Jia Y; Wang X; Xu L J Environ Sci (China); 2008; 20(12):1501-7. PubMed ID: 19209639 [TBL] [Abstract][Full Text] [Related]
2. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. Liao VH; Chu YJ; Su YC; Hsiao SY; Wei CC; Liu CW; Liao CM; Shen WC; Chang FJ J Contam Hydrol; 2011 Apr; 123(1-2):20-9. PubMed ID: 21216490 [TBL] [Abstract][Full Text] [Related]
3. Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1. Kudo K; Yamaguchi N; Makino T; Ohtsuka T; Kimura K; Dong DT; Amachi S Appl Environ Microbiol; 2013 Aug; 79(15):4635-42. PubMed ID: 23709511 [TBL] [Abstract][Full Text] [Related]
4. Exposure to different arsenic species drives the establishment of iron- and sulfur-oxidizing bacteria on rice root iron plaques. Zecchin S; Colombo M; Cavalca L World J Microbiol Biotechnol; 2019 Jul; 35(8):117. PubMed ID: 31332532 [TBL] [Abstract][Full Text] [Related]
5. As(V) Resistance and Reduction by Bacteria and Their Performances in As Removal from As-Contaminated Soils. Gao P; Zeng X; Bai L; Wang Y; Wu C; Duan R; Su S Curr Microbiol; 2017 Sep; 74(9):1108-1113. PubMed ID: 28676887 [TBL] [Abstract][Full Text] [Related]
6. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Dobran S; Zagury GJ Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167 [TBL] [Abstract][Full Text] [Related]
7. Role of indigenous arsenate and iron(III) respiring microorganisms in controlling the mobilization of arsenic in a contaminated soil sample. Vaxevanidou K; Christou C; Kremmydas GF; Georgakopoulos DG; Papassiopi N Bull Environ Contam Toxicol; 2015 Mar; 94(3):282-8. PubMed ID: 25588567 [TBL] [Abstract][Full Text] [Related]
8. Anaerobic microbial mobilization and biotransformation of arsenate adsorbed onto activated alumina. Sierra-Alvarez R; Field JA; Cortinas I; Feijoo G; Teresa Moreira M; Kopplin M; Jay Gandolfi A Water Res; 2005 Jan; 39(1):199-209. PubMed ID: 15607178 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Anderson CR; Cook GM Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729 [TBL] [Abstract][Full Text] [Related]
10. Bacillus sp. SXB and Pantoea sp. IMH, aerobic As(V)-reducing bacteria isolated from arsenic-contaminated soil. Wu Q; Du J; Zhuang G; Jing C J Appl Microbiol; 2013 Mar; 114(3):713-21. PubMed ID: 23210693 [TBL] [Abstract][Full Text] [Related]
11. Comparison of arsenate reduction and release by three As(V)-reducing bacteria isolated from arsenic-contaminated soil of Inner Mongolia, China. Cai X; Zhang Z; Yin N; Du H; Li Z; Cui Y Chemosphere; 2016 Oct; 161():200-207. PubMed ID: 27427777 [TBL] [Abstract][Full Text] [Related]
12. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. Banerjee S; Datta S; Chattyopadhyay D; Sarkar P J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(14):1736-47. PubMed ID: 22175878 [TBL] [Abstract][Full Text] [Related]
13. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. Fan H; Su C; Wang Y; Yao J; Zhao K; Wang Y; Wang G J Appl Microbiol; 2008 Aug; 105(2):529-39. PubMed ID: 18397256 [TBL] [Abstract][Full Text] [Related]
14. Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains. Bachate SP; Cavalca L; Andreoni V J Appl Microbiol; 2009 Jul; 107(1):145-56. PubMed ID: 19291237 [TBL] [Abstract][Full Text] [Related]
15. Arsenic mobilization by epilithic bacterial communities associated with volcanic rocks from Camarones River, Atacama Desert, northern Chile. Campos VL; León C; Mondaca MA; Yañez J; Zaror C Arch Environ Contam Toxicol; 2011 Aug; 61(2):185-92. PubMed ID: 20859623 [TBL] [Abstract][Full Text] [Related]
16. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil. Zhang J; Zhou W; Liu B; He J; Shen Q; Zhao FJ Environ Sci Technol; 2015 May; 49(10):5956-64. PubMed ID: 25905768 [TBL] [Abstract][Full Text] [Related]
17. Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Cavalca L; Zanchi R; Corsini A; Colombo M; Romagnoli C; Canzi E; Andreoni V Syst Appl Microbiol; 2010 Apr; 33(3):154-64. PubMed ID: 20303688 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of an arsenate-reducing bacterium and its application for arsenic extraction from contaminated soil. Chang YC; Nawata A; Jung K; Kikuchi S J Ind Microbiol Biotechnol; 2012 Jan; 39(1):37-44. PubMed ID: 21681485 [TBL] [Abstract][Full Text] [Related]
19. New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil. Sultana M; Vogler S; Zargar K; Schmidt AC; Saltikov C; Seifert J; Schlömann M Arch Microbiol; 2012 Jul; 194(7):623-35. PubMed ID: 22350109 [TBL] [Abstract][Full Text] [Related]
20. Isolation and ars detoxification of arsenite-oxidizing bacteria from abandoned arsenic-contaminated mines. Chang JS; Yoon IH; Kim KW J Microbiol Biotechnol; 2007 May; 17(5):812-21. PubMed ID: 18051304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]