These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19209707)

  • 1. Dissecting the interface between signaling and transcriptional regulation in human B cells.
    Wang K; Alvarez MJ; Bisikirska BC; Linding R; Basso K; Dalla Favera R; Califano A
    Pac Symp Biocomput; 2009; ():264-75. PubMed ID: 19209707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide identification of post-translational modulators of transcription factor activity in human B cells.
    Wang K; Saito M; Bisikirska BC; Alvarez MJ; Lim WK; Rajbhandari P; Shen Q; Nemenman I; Basso K; Margolin AA; Klein U; Dalla-Favera R; Califano A
    Nat Biotechnol; 2009 Sep; 27(9):829-39. PubMed ID: 19741643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide dissection of posttranscriptional and posttranslational interactions.
    Bansal M; Califano A
    Methods Mol Biol; 2012; 786():131-49. PubMed ID: 21938624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling.
    Hsu SD; Huang HY; Chou CH; Sun YM; Hsu MT; Tsou AP
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S12. PubMed ID: 25707768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling dynamic activities of autocrine pathways that control drug-response transcriptome networks.
    Tamada Y; Araki H; Imoto S; Nagasaki M; Doi A; Nakanishi Y; Tomiyasu Y; Yasuda K; Dunmore B; Sanders D; Humphreys S; Print C; Charnock-Jones DS; Tashiro K; Kuhara S; Miyano S
    Pac Symp Biocomput; 2009; ():251-63. PubMed ID: 19209706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refinement and expansion of signaling pathways: the osmotic response network in yeast.
    Gat-Viks I; Shamir R
    Genome Res; 2007 Mar; 17(3):358-67. PubMed ID: 17267811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of miR‑542‑3p in osteosarcoma with miRNA microarray data, and its potential signaling pathways.
    Li Z; Yao JN; Huang WT; He RQ; Ma J; Chen G; Wei QJ
    Mol Med Rep; 2019 Feb; 19(2):974-983. PubMed ID: 30569116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse engineering of regulatory networks in human B cells.
    Basso K; Margolin AA; Stolovitzky G; Klein U; Dalla-Favera R; Califano A
    Nat Genet; 2005 Apr; 37(4):382-90. PubMed ID: 15778709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel meta-analysis approach of cancer transcriptomes reveals prevailing transcriptional networks in cancer cells.
    Niida A; Imoto S; Nagasaki M; Yamaguchi R; Miyano S
    Genome Inform; 2010 Jan; 22():121-31. PubMed ID: 20238423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Logic-based analysis of gene expression data predicts association between TNF, TGFB1 and EGF pathways in basal-like breast cancer.
    Jo K; Santos-Buitrago B; Kim M; Rhee S; Talcott C; Kim S
    Methods; 2020 Jul; 179():89-100. PubMed ID: 32445696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Path2enet: generation of human pathway-derived networks in an expression specific context.
    Droste C; De Las Rivas J
    BMC Genomics; 2016 Oct; 17(Suppl 8):731. PubMed ID: 27801297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boolean Modeling of Cellular and Molecular Pathways Involved in Influenza Infection.
    Anderson CS; DeDiego ML; Topham DJ; Thakar J
    Comput Math Methods Med; 2016; 2016():7686081. PubMed ID: 26981147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncovering transcription factor and microRNA risk regulatory pathways associated with osteoarthritis by network analysis.
    Song Z; Zhang C; He L; Sui Y; Lin X; Pan J
    Biochem Biophys Res Commun; 2018 Jun; 500(4):902-906. PubMed ID: 29709470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-translational control of the MEF2A transcriptional regulatory protein.
    Ornatsky OI; Cox DM; Tangirala P; Andreucci JJ; Quinn ZA; Wrana JL; Prywes R; Yu YT; McDermott JC
    Nucleic Acids Res; 1999 Jul; 27(13):2646-54. PubMed ID: 10373581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bottlenecks and hubs in inferred networks are important for virulence in Salmonella typhimurium.
    McDermott JE; Taylor RC; Yoon H; Heffron F
    J Comput Biol; 2009 Feb; 16(2):169-80. PubMed ID: 19178137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring the regulatory interaction models of transcription factors in transcriptional regulatory networks.
    Awad S; Panchy N; Ng SK; Chen J
    J Bioinform Comput Biol; 2012 Oct; 10(5):1250012. PubMed ID: 22849367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse engineering gene regulatory networks.
    Hartemink AJ
    Nat Biotechnol; 2005 May; 23(5):554-5. PubMed ID: 15877071
    [No Abstract]   [Full Text] [Related]  

  • 18. Quantitative inference of dynamic regulatory pathways via microarray data.
    Chang WC; Li CW; Chen BS
    BMC Bioinformatics; 2005 Mar; 6():44. PubMed ID: 15748298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of transcription factors MYC and C/EBPβ mediated regulatory networks in heart failure based on gene expression omnibus datasets.
    Wang H; Wang X; Xu L; Cao H
    BMC Cardiovasc Disord; 2020 May; 20(1):250. PubMed ID: 32460775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative regulation of MEKK1/2 signaling by serine-threonine kinase 38 (STK38).
    Enomoto A; Kido N; Ito M; Morita A; Matsumoto Y; Takamatsu N; Hosoi Y; Miyagawa K
    Oncogene; 2008 Mar; 27(13):1930-8. PubMed ID: 17906693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.