These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19209708)

  • 1. Finite element analysis of drug electrostatic diffusion: inhibition rate studies in N1 neuraminidase.
    Cheng Y; Holst MJ; McCammon JA
    Pac Symp Biocomput; 2009; ():281-92. PubMed ID: 19209708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element analysis of the time-dependent Smoluchowski equation for acetylcholinesterase reaction rate calculations.
    Cheng Y; Suen JK; Zhang D; Bond SD; Zhang Y; Song Y; Baker NA; Bajaj CL; Holst MJ; McCammon JA
    Biophys J; 2007 May; 92(10):3397-406. PubMed ID: 17307827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element solution of the steady-state Smoluchowski equation for rate constant calculations.
    Song Y; Zhang Y; Shen T; Bajaj CL; McCammon JA; Baker NA
    Biophys J; 2004 Apr; 86(4):2017-29. PubMed ID: 15041644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates.
    Lu B; Zhou YC
    Biophys J; 2011 May; 100(10):2475-85. PubMed ID: 21575582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution.
    Lu B; Zhou YC; Huber GA; Bond SD; Holst MJ; McCammon JA
    J Chem Phys; 2007 Oct; 127(13):135102. PubMed ID: 17919055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes I: Finite Element Solutions.
    Lu B; Holst MJ; McCammon JA; Zhou YC
    J Comput Phys; 2010 Sep; 229(19):6979-6994. PubMed ID: 21709855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics and free energy analysis of neuraminidase-ligand interactions.
    Bonnet P; Bryce RA
    Protein Sci; 2004 Apr; 13(4):946-57. PubMed ID: 15044728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling.
    Zhang Q; Yang J; Liang K; Feng L; Li S; Wan J; Xu X; Yang G; Liu D; Yang S
    J Chem Inf Model; 2008 Sep; 48(9):1802-12. PubMed ID: 18707092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.
    Tu B; Chen M; Xie Y; Zhang L; Eisenberg B; Lu B
    J Comput Chem; 2013 Sep; 34(24):2065-78. PubMed ID: 23740647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The configurational dependence of binding free energies: a Poisson-Boltzmann study of Neuraminidase inhibitors.
    Woods CJ; King MA; Essex JW
    J Comput Aided Mol Des; 2001 Feb; 15(2):129-44. PubMed ID: 11272700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR analyses on avian influenza virus neuraminidase inhibitors using CoMFA, CoMSIA, and HQSAR.
    Zheng M; Yu K; Liu H; Luo X; Chen K; Zhu W; Jiang H
    J Comput Aided Mol Des; 2006 Sep; 20(9):549-66. PubMed ID: 17103017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal charges in lead progression: a structure-based neuraminidase case study.
    Armstrong KA; Tidor B; Cheng AC
    J Med Chem; 2006 Apr; 49(8):2470-7. PubMed ID: 16610790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of molecular docking to induced fit effects in influenza virus neuraminidase.
    Birch L; Murray CW; Hartshorn MJ; Tickle IJ; Verdonk ML
    J Comput Aided Mol Des; 2002 Dec; 16(12):855-69. PubMed ID: 12825619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining crystallographic information and an aspherical-atom data bank in the evaluation of the electrostatic interaction energy in an enzyme-substrate complex: influenza neuraminidase inhibition.
    Dominiak PM; Volkov A; Dominiak AP; Jarzembska KN; Coppens P
    Acta Crystallogr D Biol Crystallogr; 2009 May; 65(Pt 5):485-99. PubMed ID: 19390154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensemble-based virtual screening reveals potential novel antiviral compounds for avian influenza neuraminidase.
    Cheng LS; Amaro RE; Xu D; Li WW; Arzberger PW; McCammon JA
    J Med Chem; 2008 Jul; 51(13):3878-94. PubMed ID: 18558668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale Simulation of Receptor-Drug Association Kinetics: Application to Neuraminidase Inhibitors.
    Zeller F; Luitz MP; Bomblies R; Zacharias M
    J Chem Theory Comput; 2017 Oct; 13(10):5097-5105. PubMed ID: 28820938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An accelerated nonlocal Poisson-Boltzmann equation solver for electrostatics of biomolecule.
    Ying J; Xie D
    Int J Numer Method Biomed Eng; 2018 Nov; 34(11):e3129. PubMed ID: 30021243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding pattern of the long acting neuraminidase inhibitor laninamivir towards influenza A subtypes H5N1 and pandemic H1N1.
    Meeprasert A; Khuntawee W; Kamlungsua K; Nunthaboot N; Rungrotmongkol T; Hannongbua S
    J Mol Graph Model; 2012 Sep; 38():148-54. PubMed ID: 23079644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual screening pipeline and ligand modelling for H5N1 neuraminidase.
    D'Ursi P; Chiappori F; Merelli I; Cozzi P; Rovida E; Milanesi L
    Biochem Biophys Res Commun; 2009 Jun; 383(4):445-9. PubMed ID: 19371724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational design of novel, high-affinity neuraminidase inhibitors for H5N1 avian influenza virus.
    Park JW; Jo WH
    Eur J Med Chem; 2010 Feb; 45(2):536-41. PubMed ID: 19914748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.