These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19209715)

  • 21. Missing data imputation and haplotype phase inference for genome-wide association studies.
    Browning SR
    Hum Genet; 2008 Dec; 124(5):439-50. PubMed ID: 18850115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FHSA-SED: Two-Locus Model Detection for Genome-Wide Association Study with Harmony Search Algorithm.
    Tuo S; Zhang J; Yuan X; Zhang Y; Liu Z
    PLoS One; 2016; 11(3):e0150669. PubMed ID: 27014873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variable selection method for the identification of epistatic models.
    Holzinger ER; Szymczak S; Dasgupta A; Malley J; Li Q; Bailey-Wilson JE
    Pac Symp Biocomput; 2015; 20():195-206. PubMed ID: 25592581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detecting two-locus associations allowing for interactions in genome-wide association studies.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    Bioinformatics; 2010 Oct; 26(20):2517-25. PubMed ID: 20736343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A method for detecting epistasis in genome-wide studies using case-control multi-locus association analysis.
    Gayán J; González-Pérez A; Bermudo F; Sáez ME; Royo JL; Quintas A; Galan JJ; Morón FJ; Ramirez-Lorca R; Real LM; Ruiz A
    BMC Genomics; 2008 Jul; 9():360. PubMed ID: 18667089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide two-locus interaction analysis identifies multiple epistatic SNP pairs that confer risk of prostate cancer: A cross-population study.
    Shen J; Li Z; Song Z; Chen J; Shi Y
    Int J Cancer; 2017 May; 140(9):2075-2084. PubMed ID: 28124475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Review: High-performance computing to detect epistasis in genome scale data sets.
    Upton A; Trelles O; Cornejo-García JA; Perkins JR
    Brief Bioinform; 2016 May; 17(3):368-79. PubMed ID: 26272945
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel methods for epistasis detection in genome-wide association studies.
    Slim L; Chatelain C; Azencott CA; Vert JP
    PLoS One; 2020; 15(11):e0242927. PubMed ID: 33253293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. IndOR: a new statistical procedure to test for SNP-SNP epistasis in genome-wide association studies.
    Emily M
    Stat Med; 2012 Sep; 31(21):2359-73. PubMed ID: 22711278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A network approach to prioritizing susceptibility genes for genome-wide association studies.
    Kafaie S; Chen Y; Hu T
    Genet Epidemiol; 2019 Jul; 43(5):477-491. PubMed ID: 30859622
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biology-Driven Gene-Gene Interaction Analysis of Age-Related Cataract in the eMERGE Network.
    Hall MA; Verma SS; Wallace J; Lucas A; Berg RL; Connolly J; Crawford DC; Crosslin DR; de Andrade M; Doheny KF; Haines JL; Harley JB; Jarvik GP; Kitchner T; Kuivaniemi H; Larson EB; Carrell DS; Tromp G; Vrabec TR; Pendergrass SA; McCarty CA; Ritchie MD
    Genet Epidemiol; 2015 Jul; 39(5):376-84. PubMed ID: 25982363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploiting the proteome to improve the genome-wide genetic analysis of epistasis in common human diseases.
    Pattin KA; Moore JH
    Hum Genet; 2008 Aug; 124(1):19-29. PubMed ID: 18551320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epistasis and its implications for personal genetics.
    Moore JH; Williams SM
    Am J Hum Genet; 2009 Sep; 85(3):309-20. PubMed ID: 19733727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A random forest approach to the detection of epistatic interactions in case-control studies.
    Jiang R; Tang W; Wu X; Fu W
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S65. PubMed ID: 19208169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovering Genome-Wide Tag SNPs Based on the Mutual Information of the Variants.
    Elmas A; Ou Yang TH; Wang X; Anastassiou D
    PLoS One; 2016; 11(12):e0167994. PubMed ID: 27992465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide conditional search for epistatic disease-predisposing variants in human association studies.
    Wang G; Yang Y; Ott J
    Hum Hered; 2010; 70(1):34-41. PubMed ID: 20413980
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comment on two-locus epistatic interaction models for genome-wide association studies.
    Sohn KA; Wee K
    J Bioinform Comput Biol; 2015 Dec; 13(6):1571004. PubMed ID: 26260855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of PrediXcan for prioritizing GWAS associations and predicting gene expression.
    Li B; Verma SS; Veturi YC; Verma A; Bradford Y; Haas DW; Ritchie MD
    Pac Symp Biocomput; 2018; 23():448-459. PubMed ID: 29218904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protocol for Construction of Genome-Wide Epistatic SNP Networks Using WISH-R Package.
    Kadarmideen HN; Carmelo VAO
    Methods Mol Biol; 2021; 2212():155-168. PubMed ID: 33733355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protocol for Epistasis Detection with Machine Learning Using GenEpi Package.
    Petinrin OO; Wong KC
    Methods Mol Biol; 2021; 2212():291-305. PubMed ID: 33733363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.