These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 19210596)

  • 1. Different transmission strategies of a parasite in male and female hosts.
    Fellous S; Koella JC
    J Evol Biol; 2009 Mar; 22(3):582-8. PubMed ID: 19210596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between the parasite's previous and current environment mediate the outcome of parasite infection.
    Tseng M
    Am Nat; 2006 Oct; 168(4):565-71. PubMed ID: 17004228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infectious dose affects the outcome of the within-host competition between parasites.
    Fellous S; Koella JC
    Am Nat; 2009 Jun; 173(6):E177-84. PubMed ID: 19320595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New findings on the developmental process of Ascogregarina taiwanensis and Ascogregarina culicis in Aedes albopictus and Aedes aegypti.
    Roychoudhury S; Kobayashi M
    J Am Mosq Control Assoc; 2006 Mar; 22(1):29-36. PubMed ID: 16646318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic plasticity of host-parasite interactions in response to the route of infection.
    Vizoso DB; Ebert D
    J Evol Biol; 2005 Jul; 18(4):911-21. PubMed ID: 16033563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parasitism of Ascogregarina taiwanensis and Ascogregarina culicis (Apicomplexa: Lecudinidae) in larvae of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) from Manaus, Amazon region, Brazil.
    Dos Passos RA; Tadei WP
    J Invertebr Pathol; 2008 Mar; 97(3):230-6. PubMed ID: 18028941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Susceptibility of Aedes aegypti and Aedes albopictus larvae to Ascogregarina culicis and Ascogregarina taiwanensis (Apicomplexa: Lecudinidae) from Florida.
    Reyes-Villanueva F; Becnel JJ; Butler JF
    J Invertebr Pathol; 2003 Sep; 84(1):47-53. PubMed ID: 13678712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Country-wide prevalence of Ascogregarina culicis (apicomplexa: lecudinidae), a protozoan parasite of Aedes aegypti in Trinidad, West Indies.
    Beier JC; Chadee DD; Charran A; Comiskey NM; Wesson DM
    J Am Mosq Control Assoc; 1995 Dec; 11(4):419-23. PubMed ID: 8825500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevalence and seasonality of Ascogregarina culicis (Apicomplexa: Lecudinidae) in natural populations of Aedes aegypti (Diptera: Culicidae) from temperate Argentina.
    Vezzani D; Wisnivesky C
    J Invertebr Pathol; 2006 Mar; 91(3):183-7. PubMed ID: 16445937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential response to mosquito host sex and parasite dosage suggest mixed dispersal strategies in the parasite Ascogregarina taiwanensis.
    Soghigian J; Livdahl T
    PLoS One; 2017; 12(9):e0184573. PubMed ID: 28902912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The consequences of co-infections for parasite transmission in the mosquito Aedes aegypti.
    Duncan AB; Agnew P; Noel V; Michalakis Y
    J Anim Ecol; 2015 Mar; 84(2):498-508. PubMed ID: 25311642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resource depletion in Aedes aegypti mosquitoes infected by the microsporidia Vavraia culicis.
    Rivero A; Agnew P; Bedhomme S; Sidobre C; Michalakis Y
    Parasitology; 2007 Sep; 134(Pt 10):1355-62. PubMed ID: 17634157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shared control of epidemiological traits in a coevolutionary model of host-parasite interactions.
    Restif O; Koella JC
    Am Nat; 2003 Jun; 161(6):827-36. PubMed ID: 12858269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further study on Ascogregarina culicis in temperate Argentina: prevalence and intensity in Aedes aegypti larvae and pupae.
    Albicócco AP; Vezzani D
    J Invertebr Pathol; 2009 Jul; 101(3):210-4. PubMed ID: 19450603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virulence reaction norms across a food gradient.
    Bedhomme S; Agnew P; Sidobre C; Michalakis Y
    Proc Biol Sci; 2004 Apr; 271(1540):739-44. PubMed ID: 15209108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cost of co-infection controlled by infectious dose combinations and food availability.
    Fellous S; Koella JC
    Oecologia; 2010 Apr; 162(4):935-40. PubMed ID: 20033214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential co-infections drive parasite competition and the outcome of infection.
    Zilio G; Koella JC
    J Anim Ecol; 2020 Oct; 89(10):2367-2377. PubMed ID: 32688437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infectivity and pathogenicity of Ascogregarina culicis (Eugregarinida: Lecudinidae) to Aedes aegypti (Diptera: Culicidae).
    Sulaiman I
    J Med Entomol; 1992 Jan; 29(1):1-4. PubMed ID: 1552514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influencing random transmission is a neutral character in hosts.
    Rózsa L
    J Parasitol; 1999 Dec; 85(6):1032-5. PubMed ID: 10647033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascogregarina taiwanensis infection in Aedes aegypti and Aedes albopictus in Santa Catarina, South Brazil.
    Prophiro JS; Pereira TN; Oliveira JG; Dandolini GW; Silva MAND; Silva OSD
    Rev Soc Bras Med Trop; 2017; 50(2):235-238. PubMed ID: 28562761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.