These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 19210643)
1. Does soil nitrogen influence growth, water transport and survival of snow gum (Eucalyptus pauciflora Sieber ex Sprengel.) under CO enrichment? Atwell BJ; Henery ML; Ball MC Plant Cell Environ; 2009 May; 32(5):553-66. PubMed ID: 19210643 [TBL] [Abstract][Full Text] [Related]
2. Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna. Zeppel MJ; Lewis JD; Medlyn B; Barton CV; Duursma RA; Eamus D; Adams MA; Phillips N; Ellsworth DS; Forster MA; Tissue DT Tree Physiol; 2011 Sep; 31(9):932-44. PubMed ID: 21616926 [TBL] [Abstract][Full Text] [Related]
4. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO₂ concentration. Domec JC; Schäfer K; Oren R; Kim HS; McCarthy HR Tree Physiol; 2010 Aug; 30(8):1001-15. PubMed ID: 20566583 [TBL] [Abstract][Full Text] [Related]
5. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Phillips RP; Bernhardt ES; Schlesinger WH Tree Physiol; 2009 Dec; 29(12):1513-23. PubMed ID: 19819875 [TBL] [Abstract][Full Text] [Related]
6. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Phillips RP; Finzi AC; Bernhardt ES Ecol Lett; 2011 Feb; 14(2):187-94. PubMed ID: 21176050 [TBL] [Abstract][Full Text] [Related]
7. Fine-root respiration in a loblolly pine (Pinus taeda L.) forest exposed to elevated CO2 and N fertilization. Drake JE; Stoy PC; Jackson RB; DeLucia EH Plant Cell Environ; 2008 Nov; 31(11):1663-72. PubMed ID: 18684240 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Reich PB; Hobbie SE; Lee T; Ellsworth DS; West JB; Tilman D; Knops JM; Naeem S; Trost J Nature; 2006 Apr; 440(7086):922-5. PubMed ID: 16612381 [TBL] [Abstract][Full Text] [Related]
9. Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO2 and nitrogen fertilization. Fleischmann F; Raidl S; Osswald WF Environ Pollut; 2010 Apr; 158(4):1051-60. PubMed ID: 19880228 [TBL] [Abstract][Full Text] [Related]
10. Responses of a dominant temperate grassland plant (Leymus chinensis) to elevated carbon dioxide and nitrogen addition in China. Zhang L; Yang Y; Zhan X; Zhang C; Zhou S; Wu D J Environ Qual; 2010; 39(1):251-9. PubMed ID: 20048313 [TBL] [Abstract][Full Text] [Related]
11. Nitrogen fertilization enhances water-use efficiency in a saline environment. Martin KC; Bruhn D; Lovelock CE; Feller IC; Evans JR; Ball MC Plant Cell Environ; 2010 Mar; 33(3):344-57. PubMed ID: 19906150 [TBL] [Abstract][Full Text] [Related]
12. Rising atmospheric CO2 reduces sequestration of root-derived soil carbon. Heath J; Ayres E; Possell M; Bardgett RD; Black HI; Grant H; Ineson P; Kerstiens G Science; 2005 Sep; 309(5741):1711-3. PubMed ID: 16151007 [TBL] [Abstract][Full Text] [Related]
13. Soil [N] modulates soil C cycling in CO2-fumigated tree stands: a meta-analysis. Dieleman WI; Luyssaert S; Rey A; de Angelis P; Barton CV; Broadmeadow MS; Broadmeadow SB; Chigwerewe KS; Crookshanks M; Dufrêne E; Jarvis PG; Kasurinen A; Kellomäki S; Le Dantec V; Liberloo M; Marek M; Medlyn B; Pokorný R; Scarascia-Mugnozza G; Temperton VM; Tingey D; Urban O; Ceulemans R; Janssens IA Plant Cell Environ; 2010 Dec; 33(12):2001-11. PubMed ID: 20573048 [TBL] [Abstract][Full Text] [Related]
14. Effects of elevated atmospheric CO2 on invasive plants: comparison of purple and yellow nutsedge (Cyperus rotundus L. and C. esculentus L.). Rogers HH; Runion GB; Prior SA; Price AJ; Torbert HA; Gjerstad DH J Environ Qual; 2008; 37(2):395-400. PubMed ID: 18268302 [TBL] [Abstract][Full Text] [Related]
15. Uptake of inorganic and amino acid nitrogen from soil by Eucalyptus regnans and Eucalyptus pauciflora seedlings. Warren CR Tree Physiol; 2009 Mar; 29(3):401-9. PubMed ID: 19203963 [TBL] [Abstract][Full Text] [Related]
16. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO(2) (free-air CO(2) enrichment) and N-fertilization. Domec JC; Palmroth S; Ward E; Maier CA; Thérézien M; Oren R Plant Cell Environ; 2009 Nov; 32(11):1500-12. PubMed ID: 19558405 [TBL] [Abstract][Full Text] [Related]
17. Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. Taub DR; Wang X J Integr Plant Biol; 2008 Nov; 50(11):1365-74. PubMed ID: 19017124 [TBL] [Abstract][Full Text] [Related]
18. Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange. Hao GY; Jones TJ; Luton C; Zhang YJ; Manzane E; Scholz FG; Bucci SJ; Cao KF; Goldstein G Tree Physiol; 2009 May; 29(5):697-705. PubMed ID: 19324702 [TBL] [Abstract][Full Text] [Related]
19. Belowground fate of (15)N injected into sweetgum trees (Liquidambar styraciflua) at the ORNL FACE Experiment. Garten CT; Brice DJ Rapid Commun Mass Spectrom; 2009 Oct; 23(19):3094-100. PubMed ID: 19705377 [TBL] [Abstract][Full Text] [Related]
20. Impact of variable [CO2] and temperature on water transport structure-function relationships in Eucalyptus. Phillips NG; Attard RD; Ghannoum O; Lewis JD; Logan BA; Tissue DT Tree Physiol; 2011 Sep; 31(9):945-52. PubMed ID: 21712237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]