These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19210722)

  • 1. Freezing resistance varies within the growing season and with elevation in high-Andean species of central Chile.
    Sierra-Almeida A; Cavieres LA; Bravo LA
    New Phytol; 2009; 182(2):461-469. PubMed ID: 19210722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Summer freezing resistance decreased in high-elevation plants exposed to experimental warming in the central Chilean Andes.
    Sierra-Almeida A; Cavieres LA
    Oecologia; 2010 May; 163(1):267-76. PubMed ID: 20237942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drought increases the freezing resistance of high-elevation plants of the Central Chilean Andes.
    Sierra-Almeida A; Reyes-Bahamonde C; Cavieres LA
    Oecologia; 2016 Aug; 181(4):1011-23. PubMed ID: 27053321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold resistance mechanisms in high desert Andean plants.
    Squeo FA; Rada F; García C; Ponce M; Rojas A; Azócar A
    Oecologia; 1996 Mar; 105(4):552-555. PubMed ID: 28307149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile.
    Cavieres LA; Badano EI; Sierra-Almeida A; Gómez-González S; Molina-Montenegro MA
    New Phytol; 2006; 169(1):59-69. PubMed ID: 16390419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States.
    Kimball KD; Davis ML; Weihrauch DM; Murray GL; Rancourt K
    Am J Bot; 2014 Sep; 101(9):1437-46. PubMed ID: 25253704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Warmer Temperatures Affect the
    Sierra-Almeida A; Cavieres LA; Bravo LA
    Front Plant Sci; 2018; 9():1456. PubMed ID: 30349551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Will loss of snow cover during climatic warming expose New Zealand alpine plants to increased frost damage?
    Bannister P; Maegli T; Dickinson KJ; Halloy SR; Knight A; Lord JM; Mark AF; Spencer KL
    Oecologia; 2005 Jun; 144(2):245-56. PubMed ID: 15891822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disturbance is the key to plant invasions in cold environments.
    Lembrechts JJ; Pauchard A; Lenoir J; Nuñez MA; Geron C; Ven A; Bravo-Monasterio P; Teneb E; Nijs I; Milbau A
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14061-14066. PubMed ID: 27872292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Summer Freezing Resistance: A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains.
    Pescador DS; Sierra-Almeida Á; Torres PJ; Escudero A
    Front Plant Sci; 2016; 7():194. PubMed ID: 26941761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How endangered is sexual reproduction of high-mountain plants by summer frosts? Frost resistance, frequency of frost events and risk assessment.
    Ladinig U; Hacker J; Neuner G; Wagner J
    Oecologia; 2013 Mar; 171(3):743-60. PubMed ID: 23386042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation to low temperatures in the wild tomato species Solanum chilense.
    Nosenko T; Böndel KB; Kumpfmüller G; Stephan W
    Mol Ecol; 2016 Jun; 25(12):2853-69. PubMed ID: 27037798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower plasticity exhibited by high- versus mid-elevation species in their phenological responses to manipulated temperature and drought.
    Gugger S; Kesselring H; Stöcklin J; Hamann E
    Ann Bot; 2015 Nov; 116(6):953-62. PubMed ID: 26424784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers.
    Inouye DW
    Ecology; 2008 Feb; 89(2):353-62. PubMed ID: 18409425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freezing temperatures as a limit to forest recruitment above tropical Andean treelines.
    Rehm EM; Feeley KJ
    Ecology; 2015 Jul; 96(7):1856-65. PubMed ID: 26378308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. No increase in alpine snowbed productivity in response to experimental lengthening of the growing season.
    Baptist F; Flahaut C; Streb P; Choler P
    Plant Biol (Stuttg); 2010 Sep; 12(5):755-64. PubMed ID: 20701698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low temperature responses of Nothofagus dombeyi and Nothofagus nitida, two evergreen species from south central Chile.
    Reyes-Díaz M; Alberdi M; Piper F; Bravo LA; Corcuera LJ
    Tree Physiol; 2005 Nov; 25(11):1389-98. PubMed ID: 16105806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frost resistance of reproductive tissues during various stages of development in high mountain plants.
    Neuner G; Erler A; Ladinig U; Hacker J; Wagner J
    Physiol Plant; 2013 Jan; 147(1):88-100. PubMed ID: 22420836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold tolerance mechanisms of two arthropods from the Andean Range of Central Chile: Agathemera crassa (Insecta: Agathemeridae) and Euathlus condorito (Arachnida: Theraphosidae).
    Cubillos C; Cáceres JC; Villablanca C; Villarreal P; Baeza M; Cabrera R; Graether SP; Veloso C
    J Therm Biol; 2018 May; 74():133-139. PubMed ID: 29801618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freezing tolerance in Draba chionophila, a 'miniature' caulescent rosette species.
    Azocar A; Rada F; Goldstein G
    Oecologia; 1988 Feb; 75(1):156-160. PubMed ID: 28311850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.